Modeling individual loudness perception in cochlear implant recipients with normal contralateral hearing
Abstract
Use of acoustic and electric models may make the fitting of bimodal patients more efficient. The electric loudness model (McKay et al., 2003) was extended to account for simultaneous and high-rate stimulation. Both acoustic and electric loudness models require clinical audiometric data for individualization. While the availability of an individual’s thresholds is essential to achieve accurate model predictions, average values of electric field spread can be used for calculating group data. The use of individual spatial spread functions may further improve model predictions, allowing individual predictions and hence automating bimodal loudness balancing.
References
Chalupper, J. and Fastl, H., (2002). “Dynamic Loudness Model (DLM) for normal and hearing-impaired listeners”, Acta Acust. United Ac., 88, 378-386.
Chalupper, J., Schulz, J., Elke Devocht, E., George, E., and Fredelake, S. (2015). “Modeling the effects of pulse width and acoustic bandwidth on electric loudness perception,” 18. Jahrestagung der Deutschen Gesellschaft für Audiologie (DGA), Bochum.
Ching, T.Y., van Wanrooy, E., and Dillon, H. (2007). “Binaural-bimodal fitting or bilateral implantation for managing severe to profound deafness: A review,” Trends Amplif., 11, 161-192.
Dorman, M.F., Loizou, P., Wang, S., Zhang, T., Spahr, A., Loiselle, L., and Cook, S. (2014). “Bimodal cochlear implants: The role of acoustic signal level in determining speech perception benefit,” Audiol. Neurotol., 19, 234-238.
Francart, T. and McDermott, H.J. (2013). “Psychophysics, fitting, and signal processing for combined hearing aid and cochlear implant stimulation. Review,” Ear. Hearing, 34, 685-700
Francart, T., Innes-Brown, H., McDermott, H.J., and McKay, C.M. (2014). “Loudness of time-varying stimuli with electric stimulation,” J. Acoust. Soc. Am., 35, 3513-3519.
Fredelake, S. and Hohmann, V. (2012). “Factors affecting predicted speech intelligibility with cochlear implants in an auditory model for electrical stimulation,” Hear. Res., 287, 76-90.
Hamacher, V. (2004). Signalverarbeitungsmodelle des elektrisch stimulierten Gehörs. Ph.D. thesis, RWTH Aachen. Wissenschaftsverlag Mainz in Aachen, 1. Edition.
Heeren, W., Hohmann, V., Appell, J.E., and Verhey, J.L. (2013). “Relation between loudness in categorical units and loudness in phons and sones,” J. Acoust. Soc. Am., 133, EL314-319.
McKay, C.M., Henshall, K.R., Farrell, R.J., and McDermott, H.J. (2003). “A practical method of predicting the loudness of complex electrical stimuli,” J. Acoust. Soc. Am., 113, 2054-2063.
Moore, B.C.J. and Glasberg, B. (1997). “A model of loudness perception applied to cochlear hearing loss,” Audit. Neurosci., 3, 289-311.
Nogeira, W., Litvak, L., Edler, B., Ostermann, J., and Büchner, A. (2009). “Signal processing strategies for cochlear implants using current steering,” EURASIP J. Adv. Sig. Proc., 2009, 1-20.
Scherf, F. and Arnold, L. (2014). “Exploring the clinical approach to the bimodal fitting of hearing aids and cochlear implants: Results of an international survey,” Acta Otolaryngol., 134, 1151-1157.
Zwicker, E. (1958). “Über psychologische und methodische Grundlagen der Lautheit”, Acustica, 8, 237-258.
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
a. Authors retain copyright* and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
b. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
c. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
*From the 2017 issue onward. The Danavox Jubilee Foundation owns the copyright of all articles published in the 1969-2015 issues. However, authors are still allowed to share the work with an acknowledgement of the work's authorship and initial publication in this journal.