Modeling individual loudness perception in cochlear implant recipients with normal contralateral hearing

  • Josef Chalupper Advanced Bionics GmbH, European Research Center, Hannover, Germany


Use of acoustic and electric models may make the fitting of bimodal patients more efficient. The electric loudness model (McKay et al., 2003) was extended to account for simultaneous and high-rate stimulation. Both acoustic and electric loudness models require clinical audiometric data for individualization. While the availability of an individual’s thresholds is essential to achieve accurate model predictions, average values of electric field spread can be used for calculating group data. The use of individual spatial spread functions may further improve model predictions, allowing individual predictions and hence automating bimodal loudness balancing.


Büchner, A., Geissler, G., Lenarz, T., Lesinski-Schiedat, A., Chalupper, J., Brendel, M., and Fredelake, S. (2014). “Lautheitswahrnehmung bei einseitig tauben Cochlea-Implantat-Trägern,” 17. Jahrestagung der Deutschen Gesellschaft für Audiologie (DGA), Oldenburg.

Chalupper, J. and Fastl, H., (2002). “Dynamic Loudness Model (DLM) for normal and hearing-impaired listeners”, Acta Acust. United Ac., 88, 378-386.

Chalupper, J., Schulz, J., Elke Devocht, E., George, E., and Fredelake, S. (2015). “Modeling the effects of pulse width and acoustic bandwidth on electric loudness perception,” 18. Jahrestagung der Deutschen Gesellschaft für Audiologie (DGA), Bochum.

Ching, T.Y., van Wanrooy, E., and Dillon, H. (2007). “Binaural-bimodal fitting or bilateral implantation for managing severe to profound deafness: A review,” Trends Amplif., 11, 161-192.

Dorman, M.F., Loizou, P., Wang, S., Zhang, T., Spahr, A., Loiselle, L., and Cook, S. (2014). “Bimodal cochlear implants: The role of acoustic signal level in determining speech perception benefit,” Audiol. Neurotol., 19, 234-238.

Francart, T. and McDermott, H.J. (2013). “Psychophysics, fitting, and signal processing for combined hearing aid and cochlear implant stimulation. Review,” Ear. Hearing, 34, 685-700

Francart, T., Innes-Brown, H., McDermott, H.J., and McKay, C.M. (2014). “Loudness of time-varying stimuli with electric stimulation,” J. Acoust. Soc. Am., 35, 3513-3519.

Fredelake, S. and Hohmann, V. (2012). “Factors affecting predicted speech intelligibility with cochlear implants in an auditory model for electrical stimulation,” Hear. Res., 287, 76-90.

Hamacher, V. (2004). Signalverarbeitungsmodelle des elektrisch stimulierten Gehörs. Ph.D. thesis, RWTH Aachen. Wissenschaftsverlag Mainz in Aachen, 1. Edition.

Heeren, W., Hohmann, V., Appell, J.E., and Verhey, J.L. (2013). “Relation between loudness in categorical units and loudness in phons and sones,” J. Acoust. Soc. Am., 133, EL314-319.

McKay, C.M., Henshall, K.R., Farrell, R.J., and McDermott, H.J. (2003). “A practical method of predicting the loudness of complex electrical stimuli,” J. Acoust. Soc. Am., 113, 2054-2063.

Moore, B.C.J. and Glasberg, B. (1997). “A model of loudness perception applied to cochlear hearing loss,” Audit. Neurosci., 3, 289-311.

Nogeira, W., Litvak, L., Edler, B., Ostermann, J., and Büchner, A. (2009). “Signal processing strategies for cochlear implants using current steering,” EURASIP J. Adv. Sig. Proc., 2009, 1-20.

Scherf, F. and Arnold, L. (2014). “Exploring the clinical approach to the bimodal fitting of hearing aids and cochlear implants: Results of an international survey,” Acta Otolaryngol., 134, 1151-1157.

Zwicker, E. (1958). “Über psychologische und methodische Grundlagen der Lautheit”, Acustica, 8, 237-258.
How to Cite
CHALUPPER, Josef. Modeling individual loudness perception in cochlear implant recipients with normal contralateral hearing. Proceedings of the International Symposium on Auditory and Audiological Research, [S.l.], v. 5, p. 157-164, dec. 2015. Available at: <>. Date accessed: 20 nov. 2017.