Innovative methods and technologies for spatial listening and speech intelligibility using hearing implants
Keywords:
hearing implants, spatial hearing, listening testsAbstract
The proportion of the population with acquired hearing loss is increasing worldwide. Specific types of hearing loss require the treatment with hearing implants. Cochlear implants and bone conduction hearing implants are two examples. The present contribution is a prospect of the underlying project in its early stadium. The project addresses new methods and technologies that improve spatial hearing with such implants. The methods are adjusted specifically for both types of hearing implants. For cochlear implants bioinspired signal processing methods are applied. For bone conduction implants new working principles for mechanical stimulation based on piezoelectric transducers are investigated. To evaluate the developments perceptional experiments are conducted, which investigate spatial hearing and speech intelligibility with normal-hearing and hearing-impaired persons. For this purpose a virtual listening environment is applied to synthesize different room acoustics, source positions, audio signals, and acoustic scenes with different complexity. Cochlear implants and a custom-made bone conduction device are used as playback systems. The bone conduction device generates the mechanical input and transmits mechanical oscillations via the temporal bone to the cochlea. Listening tests assess speech intelligibility with spatially distributed background noise and localization abilities.
References
Ching, T.Y.C., van Wanrooy, E., and Dillon, H. (2007) “Binaural-bimodal fitting or bilateral implantation for managing severe to profound deafness: A review,” Trends Amplif., 11, 161-192.
Harczos, T., Chilian, A., and Katai, A. (2011) “Horizontal-plane localization with bilateral cochlear implants using the SAM strategy,” Proc. ISAAR, 3, 339-345.
Harczos, T., Chilian, A., and Husar, P. (2013) “Making use of auditory models for better mimicking of normal hearing processes with cochlear implants: The SAM coding strategy,” IEEE Trans. Biomed. Circuits Syst., 7, 414-425.
Harczos, T., Chilian, A., K´atai, A., Klefenz, F., Baljic, I., Voigt, P, and Husar, P. (2013) “Making use of auditory models for better mimicking of normal hearing processes with cochlear implants: First results with the SAM coding strategy,” Proc. ISAAR, 4, 317-324.
Klein, F., Werner, S., Chilian, A., and Gadyuchko, M. (2017) “Dataset of in-the-ear and behind-the-ear binaural room impulse responses used for spatial listening with hearing implants,” Proc. 142nd AES Convention, Berlin, Germany.
Kuhnke, F., Jung, L., and Harczos, T. (2015) “Compensating for impaired prosody perception in cochlear implant recipients: A novel approach using speech preprocessing,” Proc. ISAAR, 5, 309-316.
Levitt, H. (1971) “Transformed up-down methods in psychoacoustics,” J. Acoust. Soc. Am., 49, 467-477. doi: 10.1121/1.1912375
Lindau, A. (2014) Binaural resynthesis of acoustical environments - Technology and perceptual evaluation. Ph.D. thesis, Technische Universit¨at Berlin, Fakult¨at I - Geisteswissenschaften. doi: 10.14279/depositonce-4085
Stenfelt, S., and Zeitooni, M. (2013) “Binaural hearing ability with mastoid applied bilateral bone conduction stimulation in normal hearing subjects,” J. Acoust. Soc. Am., 33, 481-493. doi: 10.1121/1.4807637
Wagener, K., K¨uhnel, V., and Kollmeier, B. (1999) “Entwicklung und Evaluation eines Satztests f¨ur die deutsche Sprache, Teil 1: Design des Oldenburger Satztests,” Zeitschrift f¨ur Audiologie, 38, 4-15.
Werner, S., Klein, F., Mayenfels, T., and Brandenburg, K. (2016) “A summary on acoustic room divergence and its effect on externalization of auditory events,” Proc. 8th International Conference on Quality of Multimedia Experience (QoMEX), Portugal. doi: 10.1109/QoMEX.2016.7498973
Wilson, B.S., Lawson, D.T., Muller, J.M., Tyler, R.S., and Kiefer, J. (2003) “Cochlear implants: Some likely next steps,” Annu. Rev. Biomed. Eng., 5, 207-249.
Additional Files
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
a. Authors retain copyright* and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
b. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
c. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
*From the 2017 issue onward. The Danavox Jubilee Foundation owns the copyright of all articles published in the 1969-2015 issues. However, authors are still allowed to share the work with an acknowledgement of the work's authorship and initial publication in this journal.