Loss of speech perception in noise – causes and compensation
Resumé
Any damage within the cochlea, whether affecting hearing thresholds or high threshold nerve fibres, that affects the resolving power of the cochlear, necessitates a higher input signal-to-noise ratio to achieve normal speech understanding in noise. Other than wireless remote microphone systems, super-directional beamformers are the most effective way to achieve this. To optimise their performance, they should have beam widths that are neither too narrow nor too broad, attenuate off-beam signals in a way that preserves spatial awareness of the environment, and adapt to changing competing signals fast enough to suppress them but not so fast as to distort the target signal. This paper reports on the advantages and limitations of super-directional beamformers as measured in six different experiments.
Referencer
Beach E., Gilliver, M., and Williams, W. (2013). “Sound Check Australia: A citizen science approach to noise and hearing conservation research,” National Hearing Conservation Association Conference, St Petersburg, Florida.
Bharadwaj, H.M., Verhulst, S., Shaheen, L., Liberman, M.C., and Shinn-Cunningham, B.G. (2014). “Cochlear neuropathy and the coding of supra-threshold sound,” Front. Sys. Neurosci., 8, 26.
Bramhall, N., Ong, B., Ko, J., and Parker, M. (2015). “Speech perception ability in noise is correlated with auditory brainstem response wave I amplitude.” J. Am. Acad. Audiol., 26, 509-517.
Cameron, S. and Dillon, H. (2007). “Development of the Listening in Spatialized Noise – Sentences Test (LISN-S).” Ear. Hearing, 28, 196-211.
Chin, T. and Rickard, N. (2012). “The music USE (MUSE) questionnaire: An instrument to measure engagement in music.” Music Percept., 29, 429-446.
Daneman, M. and Carpenter, P. (1980). “Individual differences in working memory and reading.” J. Verb. Learn. Verb. Be., 19, 450-466.
Furman, A.C., Kujawa, S.G., and Liberman, M.C. (2013). “Noise-induced cochlear neuro-pathy is selective for fibers with low spontaneous rates,” J. Neurophysiol., 110, 577-586.
Glyde, H., Cameron, S., Dillon, H., Hickson, L., and Seeto, M. (2013a). “The effect of hearing impairment and aging on spatial processing ability.” Ear. Hearing, 34, 15-28.
Glyde, H., Buchholz, J.M., Dillon, H., Cameron, S., and Hickson, L. (2013b). “The importance of interaural time differences and level differences on spatial release from masking.” J. Acoust. Soc. Am. 134, EL147-152.
Glyde, H., Buchholz, J.M., Nielsen, L., Best, V., Dillon, H., Cameron, S., and Hickson, L. (submitted). “Effect of audibility on spatial release from speech-on-speech masking.”
Helfer, K.S. and Jesse, A. (2015). “Lexical influences on competing speech perception in younger, middle-aged, and older adults.” J. Acoust. Soc. Am., 138, 363-376.
Kujawa, S.G. and Liberman, M.C. (2009). “Adding insult to injury: Cochlear nerve dege-neration after “temporary” noise-induced hearing loss.” J. Neurosci., 29, 14077-14085.
Moore, B.C.J. and Sęk, A. (2009). “Sensitivity of the human auditory system to temporal fine structure at high frequencies.” J. Acoust. Soc. Am., 125, 3186-3193.
Moore, B.C.J., Creeke, S., Glasberg, B.R., Stone, M.A., and Sęk, A. (2012). “A version of the TEN Test for use with ER-3A insert earphones.” Ear. Hearing, 33, 554-557.
Noble, W., Jensen, N.S., Naylor, G., Bhullar, N., and Akeroyd, M.A. (2013). “A short form of the Speech, Spatial and Qualities of Hearing scale suitable for clinical use: The SSQ12,” Int. J. Audiol., 52, 409-412.
Pearsons, K.S., Bennett, R.L., and Fidell, S. (1977). “Speech levels in various noise environments.” Washington, D.C., U.S. Environmental Protection Agency.
Plack, C.J., Barker, D., and Prendergast, G. (2014). “Perceptual consequences of “hidden” hearing loss,” Trends Hear., 18, 1-11.
Robertson, I.H., Ward, T., Ridgeway, V., and Nimmo-Smith, I. (1996). “The structure of normal human attention: The Test of Everyday Attention.” J. Int. Neuropsychol. Soc., 2, 525-534.
Schaette, R. and McAlpine, D. (2011). “Tinnitus with a normal audiogram: Physiological evidence for hidden hearing loss and computational model.” J. Neurosci., 31, 13452-13457.
Skoe, E. and Kraus, N. (2013). “Musical training heightens auditory brainstem function during sensitive periods in development.” Front. Psychol., 4, 622.
Slater, J., Skoe, E., Strait, D.L., O’Connel, S., Thompson, E., and Kraus, N. (2015). “Music training improves speech-in-noise perception: Longitudinal evidence from a community-based music program.” Behav. Brain Res., 291, 244-252.
Stamper, G.C. and Johnson, T.A. (2014). “Auditory function in normal-hearing, noise-exposed human ears,” Ear Hearing, 36, 172-184.
Downloads
Publiceret
Citation/Eksport
Nummer
Sektion
Licens
Authors who publish with this journal agree to the following terms:
a. Authors retain copyright* and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
b. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
c. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
*From the 2017 issue onward. The Danavox Jubilee Foundation owns the copyright of all articles published in the 1969-2015 issues. However, authors are still allowed to share the work with an acknowledgement of the work's authorship and initial publication in this journal.