Optimizing the microphone array size for a virtual artificial head

  • Mina Fallahi Institut f¨ur H¨ortechnik und Audiologie, Jade Hochschule Oldenburg, Oldenburg, Germany
  • Matthias Blau Institut f¨ur H¨ortechnik und Audiologie, Jade Hochschule Oldenburg, Oldenburg, Germany
  • Martin Hansen Institut f¨ur H¨ortechnik und Audiologie, Jade Hochschule Oldenburg, Oldenburg, Germany
  • Simon Doclo Department of Medical Physics and Acoustics and Cluster of Excellence Hearing4All, Carl von Ossietzky Universit¨at Oldenburg, Oldenburg, Germany
  • Steven van de Par Department of Medical Physics and Acoustics and Cluster of Excellence Hearing4All, Carl von Ossietzky Universit¨at Oldenburg, Oldenburg, Germany
  • Dirk Püschel Akustik Technologie G¨ottingen, G¨ottingen, Germany

Abstract

As an alternative to traditional artificial heads, individual head-related transfer functions (HRTFs) can be synthesized with a virtual artificial head (VAH) consisting of a multi-microphone array in combination with filter-and-sum signal processing. The accuracy of the synthesis depends, amongst others, on the number of microphones in the array and on its topology (array size and microphone positions). In this study the effect of microphone array size on the synthesis accuracy was investigated. Five simulated microphone arrays of different sizes were used to synthesize individual HRTFs in the horizontal plane. Objective results in terms of spectral distortion and ILD deviation as well as subjective results with 10 participants showed that array size has a major effect and that the synthesis accuracy can be improved by carefully choosing an appropriate array size.

References

Doclo, S., and Moonen, M. (2003). “Design of broadband beamformers robust against gain and phase errors in the microphone array characteristics,” IEEE T. Signal Proces., 51, 2511-2526. doi: 10.1109/TSP.2003.816885

Fallahi, M., Hansen, M., Doclo, S., van de Par, S., Mellert, V., P¨uschel, D., and Blau, M. (2017). “High spatial resolution binaural sound reproduction using a virtual artificial head,” Fortschritte der Akustik, DAGA 2017, Kiel, Germany, pp. 1061-1064.

K¨ohler, S., Blau, M., van de Par, S., and Rasumow, E. (2014). “Simultane Messung mehrerer HRTFs in nicht reflexionsarmer Umgebung,” Fortschritte der Akustik, DAGA 2014, Oldenburg, Germany, pp. 202-203.

Rasumow, E., Blau, M., Hansen, M., Doclo, S., van de Par, S. Mellert, V., and P¨uschel, D. (2011). “Robustness of virtual artificial head topologies with respect to microphone positioning errors,” Proc. Forum Acusticum, Aalborg, pp. 2251-2256.

Rasumow, E., Blau, M., Hansen, M., van de Par, S., Doclo, S., Mellert, V., and P¨uschel, D. (2014). “Smoothing individual head-related transfer functions in the frequency and spatial domains,” J. Acoust. Soc. Am., 135, 2012-2025. doi:10.1121/1.4867372

Rasumow, E., Hansen, M., van de Par, S., P¨uschel, D., Mellert, V., Doclo, S., and Blau, M. (2016). “Regularization approaches for synthesizing HRTF directivity patterns,” IEEE T. Audio Speech, 24, 215-225. doi: 10.1109/TASLP.2015.2504874

Rasumow, E., Blau, M., Doclo, S., van de Par, S., Hansen, M., P¨uschel, D., and Mellert, V.(2017). “Perceptual evaluation of individualized binaural reproduction using a virtual artificial head,” J. Audio Eng. Soc., 65, 448-459. doi: 10.17743/jaes.2017.0012

Ward, D.B., Kennedy, R.A., andWilliamson, R.C. (2001). “Constant directivity beamforming,” in Microphone Arrays, Signal Processing Techniques and Applications, Eds. M. Brandstein and D. Ward (Berlin Heidelberg: Springer-Verlag), pp. 3-18.
Published
2018-01-09
How to Cite
FALLAHI, Mina et al. Optimizing the microphone array size for a virtual artificial head. Proceedings of the International Symposium on Auditory and Audiological Research, [S.l.], v. 6, p. 359-366, jan. 2018. ISSN 2596-5522. Available at: <https://proceedings.isaar.eu/index.php/isaarproc/article/view/2017-44>. Date accessed: 25 june 2018.
Section
2017/6. Advances in hearing-instrument features and related effects