Interval scaling of virtual sound sources when listening with one ear
Abstract
When listening monaurally to sounds of xed level, listeners can discount the “un-natural” in nite interaural level difference (ILD) and use loudness cues to determine the azimuthal location of a sound source. Here, we investigated the ability to use a spectral shape cue to indicate the azimuthal location of a virtual sound source. Subjects positioned a visual pointer to indicate the relative similarity between the target stimulus (a random-level multi-tone stimulus with a parametrically varied bandwidth and spectral density) and a perceptual anchor. For all of the bandwidths and spectral densities tested, the correlation between the responses of the subjects and the source’s azimuth exceeded 0.22, with a maximum of 0.81. In contrast, the correlation between the subjects’ responses and the stimulus levels were near zero. A linear decision model that utilized the spectral shape of the perceptual anchor as a template accurately predicted the dependence of subjects’ responses on the source location. Overall, the psychophysical results coupled with the model predictions suggest that subjects can ignore uninformative ILD information and use spectral shape information to determine the azimuthal location of a sound source when the sources’ level is random.
References
Algazi, V. R., Duda, R. O., Thompson, D. M., and Avendano, C. (2001). “The CIPIC HRTF database,” IEEE Workshop on Applications of Signal Processing to Audio and Electroacoustics (New Paltz NY), pp. 99-102.
Berg, B. G. (2004). “A molecular description of pro le analysis: decision weights and internal noise,” J. Acoust. Soc. Am. 115, 822-829.
Blauert, J. (1982). “Binaural localization,” Scand. Audiol. Suppl., 15, 7-26.
Braida, L. D., Lim, J. S., Berliner, J. E., Durlach, N. I., Rabinowitz, W. M., and Purks, S. R. (1984). “Intensity perception. XIII. Perceptual anchor model of context-coding,” J. Acoust. Soc. Am. 76, 722-731.
Drennan, W. R., Ho Won, J., Dasika, V. K., and Rubinstein, J. T. (2007). “Effects of temporal ne structure on the lateralization of speech and on speech understanding in noise,” J. Assoc. Res. Otolaryngol. 8, 373-383.
Durlach, N. I., Braida, L. D., and Ito, Y. (1986). “Towards a model for discrimination of broadband signals,” J. Acoust. Soc. Am. 80, 63-72.
Freedman, S. J., and Fisher, H. G. (1968). “The role of the pinna in auditory localization,” in The Neuropsychology of Spatially Oriented Behavior, edited by S. J. Freedman (Dorsey Press, Homewood, Illinois), pp. 135-152.
Freyman, R. L., Helfer, K. S., McCall, D. D., and Clifton, R. K. (1999). “The role of perceived spatial separation in the unmasking of speech,” J. Acoust. Soc. Am. 106, 3578-3588.
Fisher, H. G., and Freedman, S. J. (1968). “Localization of sound during simulated unilateral conductive hearing loss,” Acta Otolaryngol. 66, 213-220.
Häusler, R., Colburn, S., and Marr, E. (1983). “Sound localization in subjects with impaired hearing. Spatial-discrimination and interaural-discrimination tests,” Acta Otolaryngol. Suppl. (Stockh.) 400, 1-62.
Miller, G. A. (1956). “The magical number seven plus or minus two: some limits on our capacity for processing information,” Psychol. Rev. 63, 81-97.
Shaw, E. A. G. (1974). “Transformation of sound pressure level from the free eld to the eardrum in the horizontal plane,” J. Acoust. Soc. Am. 56, 1848-1861.
Shaw, E. A. G., and Vaillancourt, M. M. (1985). “Transformation of sound-pressure level from the free eld to the eardrum presented in numerical form,” J. Acoust. Soc. Am. 78, 1120-1123.
Shub, D. E., Carr, S. P., Kong, Y., and Colburn, H. S. (2008). “Discrimination and identi cation of azimuth using spectral shape,” J. Acoust. Soc. Am. 124, 3132- 3141.
Slattery, III, W. H., and Middlebrooks, J. C. (1994). “Monaural sound localization: acute versus chronic unilateral impairment,” Hear. Res. 75, 38-46.
van Wanrooij, M. M., and van Opstal, A. J. (2007). “Sound localization under perturbed binaural hearing,” J. Neurophysiol. 97, 715-726.
van Wanrooij, M. M., and van Opstal, A. J. (2004). “Contribution of head shadow and pinna cues to chronic monaural sound localization,” J. Neurosci. 24, 4163-4171.
Wightman, F. L., and Kistler, D. J. (1997). “Monaural sound localization revisited,” J. Acoust. Soc. Am. 101, 1050-1063.
Additional Files
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
a. Authors retain copyright* and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
b. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
c. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
*From the 2017 issue onward. The Danavox Jubilee Foundation owns the copyright of all articles published in the 1969-2015 issues. However, authors are still allowed to share the work with an acknowledgement of the work's authorship and initial publication in this journal.