Binaural cues for detection of signals in noise: Experiments and models

Authors

  • Laurel H. Carney Departments of Biomedical Engineering and Neurobiology and Anatomy, University of Rochester, Rochester, NY, USA

Abstract

One of the most important functions of the binaural auditory system is detection in noise. Binaural cues provide a signi cant advantage over the cues available for monaural or diotic detection. However, the details of which cues, or combinations of cues, are used by listeners for binaural detection is still not well understood. Experiments and models that have used reproducible (frozen) noise maskers that allow close examination and manipulation of binaural cues for detection, focussing on recent work on this topic from our group [Davidson et al., J. Acoust. Soc. Am. 126, 1889-1905 (2009); Davidson et al., J. Acoust. Soc. Am. 126, 1906-1925 (2009)], are brie y reviewed here. Experimental results show that a nonlinear combination of ne-structure and envelope cues is required to explain the performance of listeners. Most models for binaural detection depend strongly on either interaural time differences or interaural level differences, or on the variations of these cues over time. These models do not display the same type of interaction of these cues that is observed for human listeners.

References

Breebaart, J., van der Par, S., and Kohlrausch, A. (2001). “Binaural processing model based on contralateral inhibition I. Model structure,” J. Acoust. Soc. Am. 110, 1074-1088.

Dau, T., Püschel, D., and Kohlrausch, A. (1996). “A quantitative model of the “effective” signal processing in the auditory system. I. Model structure,” J. Acoust. Soc. Am. 99, 3615-3622.

Davidson, S. A. (2007). Detection of Tones in Reproducible Noise: Psychophysical and Computational Studies of Stimulus Features and Processing Mechanisms, Unpublished PhD Dissertation, Syracuse University (www.bme.rochester.edu/ carney.html).

Davidson, S. A., Gilkey, R. H., Colburn, H. S., and Carney, L. H. (2006). “Binaural detection with narrowband and wideband reproducible noise maskers. III. Monaural and diotic detection and model results,” J. Acoust. Soc. Am. 119, 2258- 2275.

Davidson, S. A., Gilkey, R. H., Colburn, H. S., and Carney, L. H. (2009a). “Diotic and dichotic detection with reproducible chimeric stimuli,” J. Acoust. Soc. Am. 126, 1889-1905.

Davidson, S. A., Gilkey, R. H., Colburn, H. S., and Carney, L. H. (2009b). “An evaluation of models for diotic and dichotic detection in reproducible noises,” J. Acoust. Soc. Am. 126, 1906-1925.

Durlach, N. I. (1963). “Equalization and cancellation theory of binaural masking- level differences,” J. Acoust. Soc. Am. 35, 1206-1218.

Evilsizer M. E., Gilkey R. H., Mason C. R., Colburn H. S., and Carney L. H. (2002). “Binaural detection with narrowband and wideband reproducible noise maskers: I. Results for human,” J. Acoust. Soc. Am. 111, 336-345.

Gilkey, R. H., Robinson, D. E., and Hanna, T. E. (1985). “Effects of masker waveform and signal-masker phase relation on diotic and dichotic masking by reproducible noise,” J. Acoust. Soc. Am. 78, 1207-1219.

Goupell, M. J., and Hartmann, W. M. (2007). “Interaural uctuations and the detection of interaural incoherence. III. Narrowband experiments and binaural models,” J. Acoust. Soc. Am. 122, 1029-1045.

Hafter, E. R. (1971). “Quantative evaluation of a lateralization model of masking- level differences,” J. Acoust. Soc. Am. 50, 1116-1122.

Isabelle, S. K., and Colburn, H. S. (1991). “Detection of tones in reproducible narrow- band Noise,” J. Acoust. Soc. Am. 89, 352-359.

Isabelle, S. K. (1995). Binaural detection performance using reproducible stimuli, Ph.D. Dissertation (Boston University).

Isabelle, S. K., and Colburn, H. S. (2004). “Binaural detection of tones masked by reproducible noise: Experiment and models,” Report BU-HRC 04-01.

Marquardt, T., and McAlpine, D. (2001). “Simulation of binaural unmasking using just four binaural channels,” J. Assoc. Res. Otolaryn. (Abs. 21716)

McAlpine, D., Jiang, D., and Palmer, A. R., (2001). “A neural code for low-frequency sound localization in mammals,” Nature Neuroscience 4, 396-401.

Osman, E. (1971). “A correlation model of binaural masking level differences,” J. Acoust. Soc. Am. 50, 1494-1511.

Siegel, R. A., and Colburn, H. S. (1989). “Binaural processing of noisy stimuli: Internal/external noise ratios under diotic and dichotic stimulus conditions,” J. Acoust. Soc. Am. 86, 2122-2128.

Smith, Z. M., Delgutte, B., and Oxenham, A. J. (2002). “Chimaeric sounds reveal dichotomies in auditory perception,” Nature 416, 87–90.

van de Par, S. and Kohlrausch, A. (1997). “A new approach to comparing binaural masking level differences at low and high frequencies,” J. Acoust. Soc. Am. 101, 1671-1680.

van de Par, S. and Kohlrausch, A. (1998). “Diotic and dichotic detection using multiplied-noise maskers,” J. Acoust. Soc. Am. 103, 2100-2110.

Zeng, F., Nie, K., Liu, S., Stickney, G. Del Rio, E., Kong, Y., and Chen, H. (2004). “On the dichotomy in auditory perception between temporal envelope and ne structure cues,” J. Acoust. Soc. Am. 116, 1351-1354.

Additional Files

Published

2009-12-15

How to Cite

Carney, L. H. (2009). Binaural cues for detection of signals in noise: Experiments and models. Proceedings of the International Symposium on Auditory and Audiological Research, 2, 71–82. Retrieved from https://proceedings.isaar.eu/index.php/isaarproc/article/view/2009-08

Issue

Section

2009/2. Perceptual measures and models of spatial hearing