Neurocortical mechanisms of comprehension in degraded speech

Authors

  • Jonas Obleser Max Planck Research Group “Auditory Cognition”, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
  • Antje Strauß Max Planck Research Group “Auditory Cognition”, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
  • Anna Wilsch Max Planck Research Group “Auditory Cognition”, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany

Abstract

Comprehending speech is an astonishing faculty of the human brain, especially so under adverse listening conditions. How and by which neural mechanisms do we cope so well with the fleeting percepts of speech? In addition to “facilitating” influences such as semantic context, listeners also cope with challenging listening situation by fully exploiting their sensory and cognitive resources, e.g. their working memory capacities (“compensation”). We will propose a framework for studying neural signatures of facilitation and compensation, and discuss recent data from functional MRI (fMRI), magneto- and electroencephalography studies (M/EEG; with an emphasis on neural oscillations) that utilize acoustically degraded speech stimuli to study the neural underpinnings of these facilitation and compensation mechanisms in detail.

References

Aydelott, J., Dick, F., and Mills, D. L. (2006). “Effects of acoustic distortion and semantic context on event-related potentials to spoken words” Psychophysiology, 43, 454-464.

Baddeley, A. D., and Hitch, G. J. (1974). “Working Memory” in Psychology of learning and motivation, G. A. Bower (Ed.), Academic Press, New York, 47-90.

Binder, J. R., Frost, J. A., Hammeke, T. A., Rao, S. M., and Cox, R. W. (1996). “Function of the left planum temporale in auditory and linguistic processing” Brain, 119, 1239-1247.

Davis, M. H., and Johnsrude, I. S. (2003). “Hierarchical processing in spoken language comprehension” J. Neurosci., 23, 3423-3431.

Davis, M. H., and Johnsrude, I. S. (2007). “Hearing speech sounds: top-down influences on the interface between audition and speech perception” Hearing Res., 229, 132-147.

Eckert, M. A., Walczak, A., Ahlstrom, J. B., Denslow, S., Horwitz, A., and Dubno, J. R. (2008). “Age-related effects on word recognition: reliance on cognitive control systems with structural declines in speech-responsive cortex” J.Assoc. Res. Otol., 9, 252-259.

Fries, P. (2009). “Neuronal gamma-band synchronization as a fundamental process in cortical computation” Ann. Rev. Neurosci., 32, 209-224.

Griffiths, T. D., and Warren, J. D. (2002). “The planum temporale as a computational hub” Trends Neurosci., 25, 348-353.

Hackett, T. A. (2008). “Anatomical organization of the auditory cortex” J. Am. Acad. Audiol., 19, 774-779.

Hannemann, R., Obleser, J., and Eulitz, C. (2007). “Top-down knowledge supports the retrieval of lexical information from degraded speech” Brain Res., 1153, 134-143.

Jensen, O., Gelfand, J., Kounios, J., and Lisman, J. E. (2002). “Oscillations in the alpha band (9-12 Hz) increase with memory load during retention in a short- term memory task” Cereb. Cortex, 12, 877-882.

Jensen, O., and Mazaheri, A. (2010). “Shaping Functional Architecture by Oscillatory Alpha Activity: Gating by Inhibition” Front. Hum. Neurosci., 4, 1-8.

Kalikow, D. N., Stevens, K. N., and Elliott, L. L. (1977). “Development of a test of speech intelligibility in noise using sentence materials with controlled word predictability” J. Acoust. Soc. Am., 61, 1337-1351.

Klimesch, W., Sauseng, P., and Hanslmayr, S. (2007). “EEG alpha oscillations: The inhibition–timing hypothesis” Brain Res. Rev., 53, 63-88.

Kutas, M., and Hillyard, S. A. (1980). “Reading senseless sentences: brain potentials reflect semantic incongruity” Science, 207, 203-205.

Leiberg, S., Lutzenberger, W., and Kaiser, J. (2006). “Effects of memory load on cortical oscillatory activity during auditory pattern working memory” Brain Res., 1120, 131-140.

Levelt, W. J. M. (1989). “Speaking. From Intention to Articulation” MIT Press, Cambridge, Mass.

Miettinen, I., Alku, P., Salminen, N., May, P. J. C., and Tiitinen, H. (2011). “Responsiveness of the human auditory cortex to degraded speech sounds: reduction of amplitude resolution vs. additive noise” Brain Res., 1367, 298- 309.

Miller, G. A., Heise, G. A., and Lichten, W. (1951). “The intelligibility of speech as a function of the context of the test materials” J. Exp. Psychol., 41, 329-335.

Norris, D., and McQueen, J. M. (2008). “Shortlist B: a Bayesian model of continuous speech recognition” Psychol. Rev., 115, 357-395.

Obleser, J., and Eisner, F. (2009). “Pre-lexical abstraction of speech in the auditory cortex” Trends Cogn. Sci., 13, 14-19.

Obleser, J., Eisner, F., Scott, S. K., Kotz, S. A., and Friederici, A. D. (2009). “Listen hard: A meta-analysis on brain correlates of failing speech comprehension” Program No. 70.5. 2009 Neuroscience Meeting Planner. Chicago, IL: Society for Neuroscience, 2009. Online.

Obleser, J., and Kotz, S. A. (2011). “Multiple brain signatures of integration in the comprehension of degraded speech” NeuroImage, 55, 713-723.

Obleser, J., and Weisz, N. (2010). “Differential influences of spectral and temporal features of speech on human oscillatory brain dynamics” Program No. 837.6. 2010 Neuroscience Meeting Planner. San Diego, CA: Society for Neuroscience, 2010. Online.

Obleser, J., Wise, R. J. S., Alex Dresner, M., and Scott, S. K. (2007). “Functional integration across brain regions improves speech perception under adverse listening conditions” The Journal of Neuroscience: J. Neurosci., 27, 2283- 2289.

Overath, T., Cusack, R., Kumar, S., von Kriegstein, K., Warren, J. D., Grube, M., Carlyon, R. P., and Griffiths, T. D. (2007). “An information theoretic characterisation of auditory encoding” PLoS Biol., 5, e288.

Pichora-Fuller, M. K., Schneider, B. A., and Daneman, M. (1995). “How young and old adults listen to and remember speech in noise” J. Acoust. Soc. Am., 97, 593-608.

Pichora-Fuller, M. K., and Singh, G. (2006). “Effects of age on auditory and cognitive processing: Implications for hearing aid fitting and audiologic rehabilitation” Trends Amplif., 10, 29-29.

Rauschecker, J. P., and Scott, S. K. (2009). “Maps and streams in the auditory cortex: nonhuman primates illuminate human speech processing” Nat. Neurosci., 12, 718-724.

Scherg, M., Vajsar, J., and Picton, T. W. (1989). “A source analysis of the late human auditory evoked potentials” J. Cogn. Neurosci., 1, 336-355.

Schreiner, C. E., and Winer, J. A. (2007). “Auditory cortex mapmaking: principles, projections, and plasticity.” Neuron, 56, 356-365.

Scott, S. K., Blank, C. C., Rosen, S., and Wise, R. J. (2000). “Identification of a pathway for intelligible speech in the left temporal lobe” Brain., 123, 2400- 2406.

Shannon, R. V., Fu, Q.-J., and Galvin, J. (2004). “The number of spectral channels required for speech recognition depends on the difficulty of the listening situation” Acta Otol. Suppl., 552, 50-54.

Sharp, D. J., Scott, S. K., Mehta, M. A., and Wise, R. J. S. (2006). “The neural correlates of declining performance with age: evidence for age-related changes in cognitive control” Cereb. Cortex, 16, 1739-1749.

Shinn-Cunningham, B. G., and Best, V. (2008). “Selective attention in normal and impaired hearing” Trends Amplif., 12, 283-299.

Stickney, G. S., and Assmann, P. F. (2001). “Acoustic and linguistic factors in the perception of bandpass-filtered speech” J. Acoust. Soc. Am., 109, 1157-1165.

Weisz, N., Hartmann, T., Müller, N., and Obleser, J. (2011). “Alpha Rhythms in Audition : Cognitive and Clinical Perspectives” Front. Psychol., 2, 73.

Additional Files

Published

2011-12-15

How to Cite

Obleser, J., Strauß, A., & Wilsch, A. (2011). Neurocortical mechanisms of comprehension in degraded speech. Proceedings of the International Symposium on Auditory and Audiological Research, 3, 251–262. Retrieved from https://proceedings.isaar.eu/index.php/isaarproc/article/view/2011-30

Issue

Section

2011/2. Neural representation of complex sounds and speech in the auditory brain