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Speech audiometry in noise based on matrix sentence tests is an important
diagnostic tool to assess the speech reception threshold (SRT) of a subject,
i.e., the signal-to-noise ratio corresponding to 50% intelligibility. Although
the matrix test format allows for self-conducted measurements by applying
a visual, closed response format, these tests are mostly performed in open
response format with an experimenter entering the correct/incorrect responses
(expert-conducted). Using automatic speech recognition (ASR) enables self-
conducted measurements without the need of visual presentation of the
response alternatives. A combination of these self-conducted measurement
procedures with signal presentation via smart speakers could be used to
assess individual speech intelligibility in an individual listening environ-
ment. Therefore, this paper compares self-conducted SRT measurements
using smart speakers with expert-conducted lab measurements. With smart
speakers, the experimenter has no control over the absolute presentation level,
mode of presentation (headphones vs. loudspeaker), potential errors from the
automated response logging, and room acoustics. We present the differences
between measurements in the lab and with a smart speaker for normal-
hearing, mildly hearing-impaired and moderate hearing-impaired subjects in
low, medium, and high reverberation.

INTRODUCTION

Being able to understand speech, especially in noisy conditions, is a crucial factor of
social interaction and is often limited for hearing impaired listeners, which can reduce
their quality of life. An early diagnosis of the hearing loss can ease this limitation
by an early supply of a hearing aid (Arlinger, 2003). A reliable measurement tool
with a high accuracy for quantifying the ability of speech understanding in noise is
available through matrix sentence tests (Kollmeier et al., 2015). Due to the closed-
vocabulary construction of this test, it allows for an unsupervised measurement with a
graphical user interface. Nevertheless, such an interface excludes subjects who cannot
read (children, illiterate, visually impaired). Hence, we focus on a system that uses
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only acoustic communication cues, i.e., speech. This we propose to do with automatic
speech recognition (ASR) for the response logging (Ooster et al., 2018). While that
system created for clinical (and relatively controlled) environments, an ASR-based
conduction has also the potential of increasing the accessibility by performing self-
measurements at home.

Smart speakers such as Amazon’s Echo, Apple’s HomePod or Google Home have the
potential of bringing such a test to a broader subject base, since they provide a good
audio quality and have a built-in dialogue manager including an ASR component.
There have already been approaches to use smart home systems for medical purposes,
e.g., to provide acoustic cues to support dementia patients’ memory (Boumpa et al.,
2019) or to support elderly people in their physical therapy (Vora et al., 2017).

In this work, we present a smart speaker application for measuring and validating the
speech reception threshold (SRT), i.e. the signal-to-noise ratio (SNR) corresponding
to 50% intelligibility with the matrix sentence test. Smart speaker-based measure-
ments have several differences compared to established clinical setups: (i) We use a
high-quality speech synthesis instead of the natural speech files that are protected by
copyright, (ii) the sound is presented via the speaker in a reverberant environment, (iii)
compressed audio files are presented, and (iv) the listener’s response is transcribed
via ASR and not logged by an audiometrist. In a first proof-of-concept study the
smart speaker-based measurement was already evaluated in a single office room with
six normal-hearing (NH) subjects (Ooster et al., 2019). However, the accuracy for
hearing-impaired (HI) subjects, which is crucial for speech audiometry, has not been
determined. Furthermore, in a real use case, the acoustic conditions in which the test is
conducted can exhibit large variability. The user can be asked to avoid any background
noise (in order to get an accurate test result), but it is often not possible to easily
change the acoustics of the room where the smart speaker is placed. Therefore, in this
study, we evaluate the measurement procedure when testing mildly and moderately
HI subjects and secondly quantify the influence of acoustic conditions by conducting
the experiments with three different kinds of reverberation.

METHODS

Matrix sentence test

The speech audiometric test used in this study is the German matrix sentence test
(Wagener et al., 1999). During testing, the subject hears sentences in stationary
speech-shaped noise, and the SNR is dynamically adapted to reach the SRT after
presenting 20 noisy sentences. The final measurement outcome is estimated by
a likelihood fit of a psychometric function to the 20 data points of the whole
measurement. The words of the stimulus sentences are randomly selected from a
five-by-ten word matrix in order to create sentences with the structure Name Verb
Numeral Adjective Object. Through this procedure, the individual words of the
sentence are independent. This results in a low test-to-retest standard deviation of
1 dB for HI subjects (Wagener and Brand, 2005) and 0.5 dB for NH subjects (Brand
and Kollmeier, 2002).
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The smart speaker application

The elements of the smart speaker application for the automated SRT measurement
are shown in the overview Figure 1 (Ooster et al., 2019). The application is
implemented with the Alexa Skill Developer Kit in Python (github.com/alexa/
alexa-skills-kit-sdk-for-python). When the measurement application is
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Fig. 1: Overview of the smart speaker measurement application.

started, the subject first hears an instruction about the general measurement procedure
and the structure of this hearing test. These instructions are based on the guidelines
for the clinical application of the matrix sentence test. During the measurement itself
the dialogue manager of the smart speaker uses intents, which are derived from lexical
patterns on the ASR output to take the next action within the measurement application.
The core intent of the measurement application is the response to a matrix stimulus
sentence. The lexical pattern to invoke this intent are based on realistic responses
obtained in previous work (Ooster et al., 2018). Based on this intent, the keywords
in the subjects response are collected; the SNR for the next presentation is adapted
based on the resulting score. Since the original speech material of the matrix sentence
test is protected by copyright, we used a synthesized version of the sentences from the
female German matrix sentence test, which was evaluated in a previous study (Nuesse
et al., 2019). All stimulus matrix sentence audio files were premixed with the speech
shaped noise at steps of 0.1 dB and converted to the mp3 data format (MPEG version 2,
48 kbps, 16 kHz) in order to be properly played on the smart speaker.

Evaluation measurements

The prototype application was evaluated using an Amazon Echo Plus 2nd Generation
loudspeaker. The measurements were conducted with subjects with three different
hearing-profiles; normal hearing, mildly hearing impaired, and moderately hearing
impaired. The subjects were categorized with pure tone average (PTA) criteria from
.5 to 4 kHz (Mathers et al., 2001). All subjects were paid for the participation in
this study. The smart speaker measurements were conducted in a room that uses
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distributed microphones and loudspeakers to simulate different room acoustics. The
subjects were sitting in the center of the room with the smart speaker in front on a table
at a distance of 2 m. At the beginning of the measurement, the subjects were asked
to adjust the volume of the speaker to an easy intelligibility of the speech assistance’s
voice. To account for different acoustic conditions, rooms with different reverberation
times T30 were simulated: Living Room (T30 = 0.51s), Poor Classroom (T30 = 1.12s)
and Concert Hall (T30 = 1.52s). Every time the room settings were changed, the
subjects heard four random sentences at different SNR so they could adapt to the new
room and also could adjust the volume of the speaker. The subjects were always
allowed to change the volume of the speaker again during the measurement. The
subjects were invited for two measurement sessions each with nine SRT measurements
in total, as described in Table 1. Overall, each subject conducted 16 measurements
with the smart speaker application as well as two clinical reference measurements.
The clinical reference measurements were conducted in an isolated sound booth,

Room A Room B Room C Booth
Training1 Training2 Test1 Test2 Test3 Test4 Test5 Test6 Reference

Table 1: Measurement procedure during one of the two sessions for each
subject. While the reference measurement with the clinical setup was
always in the end, the order of the room settings during the smart speaker
measurement was randomly chosen for each subject.

with a calibrated and equalized loudspeaker, the original, female, natural voice for
the stimulus sentences (Wagener et al., 2014) and a human supervisor for response
scoring. At the end of each measurement session, all recorded audio files in the cloud
of the smart speaker were deleted so that the ASR system is not adapted to that speaker
for the measurement with the next subject. Parallel to the measurements, a human
supervisor scored the subjects responses to have the true value for the scoring for each
sentence (assuming that the experienced human supervisor produces no errors when
logging the reported words). These true transcripts were later used to quantify the
errors of the smart speaker ASR in terms of the score insertion rate (SIR) and the
score deletion rate (SDR), i.e., the errors that could actually have an influence on the
SRT by inserting or deleting a word. They are defined by

SIR =
Nscore insertions

Nscore
;SDR =

Nscore deletions

Nscore
, (Eq. 1)

where the number of errors Nscore insertion and Nscore deletion are normalized by the
number of correctly repeated matrix sentence test words in the subject’s response
Nscore. The order of the words is neglected in this error metric. The full error rates
in the classical sense of an ASR system cannot be calculated since the full transcript
(including non score relevant words) was not created. Details on the evaluation metrics
can be found in Ooster et al. (2018).
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RESULTS

The evaluation measurements were conducted with 5 subjects from each subject
group, resulting in a total of 15 subjects as described in Table 2. Figure 2 describes the

Normal-hearing Mild hearing Loss Moderate hearing loss
N (f/m) 5 (2/3) 5 (1/4) 5 (2/3)

Age 62 +/- 6 years 68 +/- 1 years 60 +/- 11 years
PTA 13 +/- 7 dB 29 +/- 5 dB 47 +/- 8 dB

Table 2: Description of the subjects who participated in the evaluation.

SRT measurement accuracy of the measurement with the smart speaker application
compared to clinically acquired estimates. While the black line indicates a potential
perfect match between the clinically measured value and the value estimated with the
smart speaker application, most of the measured points are above this line. This highly
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Fig. 2: The measured SRTs with the smart speaker application plotted vs. the
SRTs measured with the clinical reference setup in the same session. Color
depicts the hearing loss categorization based on the PTA criterion; the shape
of data points denotes the room setting during the smart speaker measurement.

significant bias (paired-sample t-test, p = 3.1 · 10−15) that amounts to 1.38 dB on
average is constant over the acoustic conditions and subjects groups. We did not find
any significant difference with the t-test between the different room settings and the
subject groups. The intra- and inter-subject standard deviation (SD; 1.37dB/3.79dB)
are higher than with the clinical setup (0.76dB/3.11dB) over all subject groups and
acoustic conditions. The inter- and the intra-subject SD varied slightly in the three
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different acoustic conditions, with the highest increase of the inter-subject SD in the
Concert Hall condition of about 1 dB. The intra-subject SD is increased by 0.39 dB
in this condition. For the mildly HI subjects the intra- and inter-subject SD is slightly
increased in comparrsion to the NH subjects by 0.32 dB and 0.30 dB, respectively.
For the moderately HI subjects both the intra- and the inter-subject SD is increased
by 1.45 dB and 1.76 dB, respectively, in comparison to the mildly HI subjects. This
is also due to the fact that two measurement sessions failed completely: In one of
these measurement sessions, the ASR performance was with 19.8% SDR (6.9% SIR)
very low in comparison to the other subjects, which resulted in an bias of 8.3 dB
and a SD of 3.3 dB. In the next measurement session of this subject, the ASR
performance was better (at 8.5% SDR and 4.1% SIR), which is consistent with a
much higher measurement accuracy with a bias of -0.2 dB and a SD of 1.2 dB.
The second inaccurate measurement session is not explainable by the error rates of
the ASR system (SDR = 7.4%, SIR = 5.8%). However, we noticed that the subject
was speaking very quietly which resulted in several terminations of the measurement
application. Although the subject spoke in normal volume towards the end of the
session, the terminations could have had a large effects on the ability of the subjects
to focus on the listening task. When excluding these two subjects the increase of the
inter- and intra-subject SD for the moderately HI subjects goes down to 0.33 dB and
0.70 dB, respectively.
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Fig. 3: The ASR performance of the smart speaker for each of the 15 subjects.

The ASR performance of the smart speaker for all subjects is shown in Figure 3. With
an average of SDR = (8.0±3.2)% are the score deletion errors significantly higher for
the HI subjects than the score deletion error of the NH subjects, which had an average
of SDR = (5.3± 2.3)% (two sample t-test, equal variances not assumed, p = 3.0%).
Three of the HI subjects showed SDRs above 10%; through post analysis (as discussed
above) ASR errors for one of those subjects could be attributed to a strong decrease
of the SRT measurement accuracy. The score insertion errors are below 5% for all of
the subjects and no significant difference was found between NH and HI subjects.

DISCUSSION

In this study, we investigated the SRT measurement accuracy with a smart speaker-
based application in three different acoustic conditions and with three different subject
groups. In our previous study regarding the speech-controlled automated matrix
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test (SAMT; Ooster et al., 2018), we didn’t find any significant decrease of the
measurement accuracy conditioned by the errors from the ASR system. In this study,
an ASR system, that was not that fine-tuned to the words of the matrix test was used
in a more challenging acoustic condition (far-field recognition with reverberation) and
therefore the obtained error rates are higher. For one subject this resulted in a very
inaccurate measurement, but overall the observed intra-subject SD is very similar to
the one of the clinical application. The only subject group with an increase intra-
subject SD are the moderately HI subject. This subject group has very similar ASR
error rates as the mildly HI subjects, so the decreased replicability of the measurement
outcome seems not to be indicated by the smart speaker based measurement itself, but
presumably due to an insecurity of subjects in terms of speech-based interaction with
a speaker. The obtained ASR error rates during this study represent a lower boundary
of the ASR performance, since in a real use case the ASR system should be adapted to
the specific user and secondly owners of smart speakers are probably used to speech-
based inputs and normal patterns of interaction. The moderately HI subjects showed
a decreased measurement accuracy with the smart speaker application, but most of
the variance during the measurement with the moderate HI subjects is towards higher
(worse) SRTs and therefore would not change the screening result.

CONCLUSIONS

In this paper, we have shown that speech audiometry conducted with a smart
speaker for at-home screening of hearing deficits is possible with an intra-subject
SD of 1.37 dB. The bias between the clinical and the smart-speaker measurement is
significant, but consistent across subject groups and room settings, and no significant
difference was found between the groups and conditions, respectively. While normal-
hearing and mildly hearing-impaired subjects showed a very similar measurement
accuracy as the clinical reference measurement, the inter- and intra-subject SD
is increased for moderately hearing-impaired subjects by 1.39 dB and 1.89 dB,
respectively. This was attributed to the results for single subjects, whose speech
produced high ASR error rates or was too low to properly conduct the measurement.
When excluding these subjects from the analyses the increase of inter- and intra-
subject SD goes down to 0.33 dB and 0.70 dB, respectively and the overall intra-
subjects SD goes down to 0.91 dB which is comparable to the intra-subject SD with
the clinical measurement setup of 0.67 dB.

In future work, we will develop an SRT-based criterion to produce a recommendation
for the test user (e.g., to seek advice from an audiometrist), based on ratings of his or
her performance for the test. This will require a larger number of listeners to be tested
to establish a reliable statistical foundation for such a recommendation.
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