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Fixed beamforming for hearing aids is suboptimal due to mismatches in real-
world situations between the assumed and encountered sound fields. Adaptive
beamforming potentially provides better performance but may degrade it
if the characteristics of the signal required by the design procedure are
inaccurately estimated. This paper proposes a straightforward but sufficiently
rich model for the sound field that can be used to increase the robustness of
adaptive beamformer design. A method for estimating the model parameters
is also presented. In reverberant acoustic conditions, the proposed method
improves performance by > 1 dB even at −16 dB SNR, the lowest signal to
noise ratio (SNR) tested. Furthermore, it is shown to be robust in a variety
of acoustic conditions which do not conform to the sound field model, and to
inaccurate steering of the array.

INTRODUCTION

Current drivers for innovation in microphone array beamforming include the in-
creasing availability of more powerful computational resources, and the increasing
significance of several emerging application areas, such as spherical arrays described
in Rafaely (2015) and Jarret et al. (2017), robot audition as in Tamai et al. (2004) and
Löllmann et al. (2017) and binaural hearing aids discussed in Klasen et al. (2007) and
Moore et al. (2018). The linearly constrained minimum variance (LCMV) family
of beamformers are widely used in acoustic beamforming due to their ability to
suppress noise without distorting the target signal. The original Capon beamformer
(Capon, 1969), or minimum power distortionless response (MPDR) beamformer (van
Trees, 2002), minimise the output power given the sample covariance matrix (SCM),
whereas the minimum variance distortionless response (MVDR) beamformer design
is based on the noise covariance matrix (NCM). Both use a steering vector to set
the distortionless constraint on the target signal and, under ideal conditions, they are
equivalent. In practice, their sensitivity to errors in the steering vector differs (Cox et
al., 1987; Ehrenberg et al., 2010). For the MVDR beamformer, the effect of mis-
steering is merely to attenuate the desired signal, whereas for the MPDR signal,
cancellation occurs since the distortionless constraint is not matched to the target
signal. Furthermore, it is shown in Ehrenberg et al. (2010) that an inaccurate estimate
of the NCM is preferable to an accurate SCM.

In reverberant environments, even with a perfectly aligned anechoic steering vector,
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coherent reflections originating from the target source cause signal cancellation for
the MPDR. Using reverberant relative transfer function (RTF) steering vectors as in
Gannot et al. (2001), the distortionless constraint preserves the direct path and at least
the first few early reflections, reducing the potential for signal cancellation. Effective
RTF estimation is an ongoing research problem (Markovich et al., 2009; Markovich-
Golan and Gannot, 2015).

Obtaining an estimate of the NCM which is completely uncorrelated with the target
speech and is effective in practical applications is difficult to achieve. Informed
spatial filtering is a concerted research effort to model the statistics of different signal
components from which the total NCM can be obtained (Thiergart and Habets, 2003;
Braun and Habets, 2015; Schwartz et al., 2016; Chakrabarty and Habets, 2018; Braun
et al., 2018; Moore et al., 2019a). In many cases, estimated hyper-parameters such
as the speech presence probability (SPP), coherent to diffuse ratio (CDR), or one or
more directions of arrival (DOAs) control when to update each statistic. Inevitably
such estimates become less accurate at low signal to noise ratios (SNRs) and in time-
varying scenarios which may, for example, lead to target energy leaking into the NCM.

Robust beamformers have been proposed which reduce sensitivity to errors and
increase the white noise gain at the expense of reduced directivity, for example in
Cox et al. (1987) and Li et al. (2003). These generally involve diagonal loading of
the covariance matrix. Ultimately, to remove all possibility of signal cancellation
the conservative approach often adopted in real-world implementations is to design a
fixed, super-directive beamformer using an assumed noise model (Bitzer and Simmer,
2001).

In this paper, we propose a simple model of the sound field that is sufficiently rich to
describe complex scenes and whose parameters can be estimated at low SNRs. We
assume that calibration measurements of the array manifold are available and that
the steering direction is known. Using this information, a method for estimating the
time-varying parameters of the sound field model is proposed. The adequacy of the
proposed model and resulting SCM is evaluated in the specific context of MPDR
beamforming for binaural hearing aids (HAs) but it can equally be applied to other
filter structures and array geometries. In this case, as is customary, a known target
direction is realized by fixing the steering direction towards the front of the head and
requiring that the listener turn to face the desired talker.

FORMULATION AND PROPOSED MODEL

The time domain signal received at the mth microphone in an array is denoted

ym(t) =
L

∑
l=1

xm,l(t)+ vm(t) (Eq. 1)
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where t is the time index, l is the source index, xm,l(t) is the signal due to the lth source
and vm(t) is sensor noise. In a reverberant enclosure,

xm,l(t) = hm,l(t)∗ sl(t) (Eq. 2)

where sl(t) is the signal emitted by the lth source, hm,l(t) is the acoustic impulse
response (AIR) from the lth source to the mth microphone, and ∗ denotes convolution.
Decomposing hm,l(t) into the direct path, h(d)m,l(t), and reflected components, h(r)m,l(t),
Eq. 2 can be rewritten

xm,l(t) = (h(d)m,l(t)+h(r)m,l(t))∗ sl(t) (Eq. 3)

= h(d)m,l(t)∗ sl(t)+h(r)m,l(t)∗ sl(t) (Eq. 4)

= x(d)m,l(t)+ x(r)m,l(t) (Eq. 5)

where x(d)m,l(t) and x(r)m,l(t) are the direct path and reflected components of xm,l(t),
respectively.

Combining Eq. 1 and Eq. 5, the microphone signals can be written

ym(t) =
L

∑
l=1

x(d)m,l(t)+
L

∑
l=1

x(r)m,l(t)+ vm(t) (Eq. 6)

and can equivalently be expressed in the short time Fourier transform (STFT) domain
as

Ym(ν , `) =
L

∑
l=1

X (d)
m,l (ν , `)+

L

∑
l=1

X (r)
m,l(ν , `)+Vm(ν , `) (Eq. 7)

where capitalized letters denote the STFT of the quantities denoted by the corre-
sponding lowercase letters in Eq. 6, and ν and ` are the frequency and frame indices
respectively. Stacking the signals for all M microphones in an array to give, for
example, y(`) =

[
Y1(`) . . . YM(`)

]T , Eq. 7 then becomes

y(`) =
L

∑
l=1

x(d)l (`)+
L

∑
l=1

x(r)l (`)+v(`) (Eq. 8)

where (·)T denotes the transpose, and since all frequency bins are processed indepen-
dently, the dependence on ν has been dropped for clarity.

The proposed signal model makes four simplifying assumptions: (i) all sources are
in the far field, such that h(d)m,l(t) is identical to the response of the array to a plane-
wave from the same direction as the lth source, up to a scalar gain and time shift;
(ii) the array is sufficiently compact that the RTF to each microphone with respect
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to the reference microphone can be represented by a multiplicative constant in the
STFT domain (Avargel and Cohen, 2007); (iii) the direct path signals are W-disjoint
orthogonal (Yilmaz and Rickard, 2004), such that in each time-frequency bin, a single
source is dominant, (iv) the sum of all reflected signals reduces to a diffuse field which,
by definition, is isotropic since the incident power from all directions is the same. With
these assumptions, Eq. 8 reduces to

ẏ(`) = a(Ω(`))Ṡl(`)(`)+ γ(`)+v(`) (Eq. 9)

where γ(`) is the diffuse noise signal, l(`) and Ω(`) are the index and corresponding
DOA, respectively, of the dominant source in the `th frame (which may be different at
each frequency), Ṡl(`)(`) is the signal due to the dominant source as observed at the
arbitrarily selected reference microphone and a(φ) is the plane-wave array manifold
expressed as the RTF to each microphone with respect to the reference microphone.

The covariance of the microphone signals is

Ry(`) = E{y(`)yH(`)} (Eq. 10)

where E{·} is the expectation operator and (·)H denotes the conjugate transpose.
Using the signal model defined in Eq. 9 and assuming the three terms are uncorrelated

Rẏ(`) = E{|Ṡ2
l(`)(`)|}a(Ω(`))aH(Ω(`))+E{γ(`)γH(`)}+E{v(`)vH(`)} (Eq. 11)

where (·)∗ is the conjugate.

It can now be seen that each term on the right hand side of Eq. 11 can be expressed as
the product of a fixed matrix and a scalar parameter. This leads to

Rẏ(`) = σd(`)Ra(Ω(`))+σγ(`)Rγ +σv(`)Rv (Eq. 12)

where the covariance is defined by four parameters Ω(`), σd(`), σγ(`) and σv(`)
denoting, respectively, the DOA of the plane-wave component and the powers of the
plane-wave, diffuse and sensor noise components.

MODEL PARAMETER ESTIMATION

A method is presented to estimate the parameters of the signal model proposed in
Eq. 12, and use them to obtain an estimate of the NCM. The algorithm operates
directly in the STFT domain where a recursive estimate, R̂y(`), of the sample
covariance matrix, Ry(`), is obtained as

R̂y(`) = αR̂y(`−1)+(1−α)y(`)yH(`) (Eq. 13)

where α defines the time constant.

The model parameters can then be found from the solution to the optimization problem

argmin
Ω(`),σd(`),σγ (`),σv(`)

{||R̂y(`)−Rẏ(`)||F} (Eq. 14)
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Fig. 1: Improvement in A-weighted segmental SNR as a function of SNR
with respect to (a) reverberant babble from 16 directions on circle, (b) sensor
noise, (c) interfering speech from −67.5◦. In each condition the SNR with
respect to the other noise types is 20 dB.

where || · ||F denotes the Frobenius norm. Many approaches to solving Eq. 14 are
available. The approach adopted here is to obtain the ordinary least squares solution
for σd(`), σγ(`) and σv(`) for a candidate set of values of Ω(`), from which the best fit
is selected. The final NCM estimate is given by Eq. 12 using the parameter estimates
obtained.

SIMULATION EXPERIMENTS

The efficacy of the proposed method in the context of MPDR/MVDR beamforming is
evaluated in two experiments. In the first, algorithm performance is assessed as a func-
tion of SNR where a single type of noise is dominant. In the second, six different sce-
narios are considered in which, like real-world acoustic environments, the composition
of the sound field is more complicated. Listening examples are available at https:

//squaresetsound.com/demos/constrained-covariance-matrix-estimation-2019.

Microphone signals are simulated for a 7.9×6.0×3.5 m room with a reverberation
time of 250 ms according to Eq. 1 and Eq. 2. Anechoic speech is convolved with
hearing aid room impulse responses (HARIRs) measured from a horizontal ring of
16 loudspeakers positioned at azimuth angles, φ ∈ {0◦,22.5◦, . . . ,337.5◦}, to a pair of
behind the ear (BTE) hearing aids (M = 4) worn by a head and torso simulator (HATS)
(subject 42; Moore et al., 2019b). Sensor noise is simulated using independent
identically distributed Gaussian noise which is filtered to match the spectra of real
sensor noise recordings for the microphones used in Moore et al. (2019b).

All beamformers are designed based on a repeated set of AIR measurements for the
same hearing aids and HATS (as per subject 42; Moore et al., 2019b) but made on
a different day, after complete removal and replacement of the hearing aids from the
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mannequin, and the mannequin from the measurement room. These hearing aid head-
related impulse responses (HAHRIRs) (subject s28; Moore et al., 2019b) are truncated
to remove reflections from the room and so contain only direct-path propagation. The
steering vector, d = a(0), is defined here as the RTF with respect to the front right
microphone for a plane-wave arriving from φ = 0.

The covariance matrix for a diffuse field is assumed to be cylindrically isotropic, since
real rooms tend to have more absorption in the floor and/or ceiling compared to the
walls (Schwarz et al., 2015). It is computed by discretising

Rγ =
∫ 2π

Ω=0
h(d)(Ω)h(d)H

(Ω)dΩ (Eq. 15)

to the 7.5◦ resolution of the HAHRIRs.

Beamformer weights are calculated according to

w = Rε
−1d
[
dHRε

−1d
]−1

(Eq. 16)

where Rε = R+ εI, I is the identity matrix and ε ≥ 0 is set to limit the condition
number of Rε to ≤100. The baseline method assumes cylindrically isotropic noise
(i.e., R=Rγ ). The proposed method uses the estimated covariance matrix from Eq. 12
(i.e., R = Rẏ(`) with the parameters from Eq. 14). The robust MPDR method uses the
estimated sample covariance matrix from Eq. 13 (i.e., R = R̂y(`)). It should be noted
that the baseline method is signal independent (fixed), whereas the proposed method
and MPDR method are adaptive with, respectively, 4 and M(M+1)/2 = 10 estimated
parameters per time-frequency cell.

Signals are processed at a sample rate of 20 kHz in the STFT domain with 16 ms
frames overlapping by 50 %. The time constant for recursive estimation of R̂y(`) in
Eq. 13 is chosen to be 50 ms in the following experiments.

Experiment 1

The spatial arrangement of sound sources is fixed throughout Experiment 1. The
desired source is male speech from φ = 0◦, and there are three noise sources: (a) an
interferer (male speech) at φ =−67.5◦ (to the listener’s right); (b) babble noise from
sixteen equally-spaced azimuths on the horizontal plane, such that powers of the direct
path signals arriving from all azimuth directions are the same; (c) sensor noise.

The levels of the target and interferer speech sources are measured as the average
active level in dB of the reverberant signals at the two front microphones, when each
sound source is presented from φ = 0◦, as defined in ITU-T (1993) and Brookes
(1997). Sound presentation from other angles (i.e., interferers) therefore includes the
effect of the natural directivity of the head/array geometry. The levels of the noise
signals are measured as the average power at the front two microphones.

The level of the desired source is fixed, and in each of three test cases, the effect of
varying the level of one, dominant, noise source is assessed whilst keeping the other
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Fig. 2: Improvement in (a) A-weighted segmental SNR (b) STOI and (c)
PESQ for the 6 test cases defined in Table 1.

two fixed at −20 dBr with respect to the desired source. Performance is evaluated
in terms of the improvement in frequency-weighted segmental SNR (fwSegSNR)
at the reference microphone where the clean target is the direct path component of
the desired speech. The improvement in fwSegSNR is an appropriate metric as it
quantifies the noise reduction only during periods of target speech activity and changes
can be easily interpreted (in dBs) regardless of the specific listening situation.

Figure 1shows that in all cases the proposed method outperforms the baseline. In
Figure 1(a), where the dominant noise is babble, the diffuse noise model of the
baseline is a reasonably good approximation, and the benefit of the proposed method
is smallest. In Figure 1(b), where the dominant noise is uncorrelated between sensors
(i.e., spatially white) the baseline method actually reduces the fwSegSNR, which is
consistent with the well known trade-off between directivity and white noise gain. In
Figure 1(c), where the dominant noise source is reverberant interfering speech, the
benefit of the proposed method is most clearly seen with about 1 dB improvement
over a wide range of signal to interference ratios (SIRs).

In all cases the MPDR beamformer performs the best at low SNRs but even worse than
the baseline at high SNRs. At low SNRs the estimated sample covariance matrix is
dominated by noise and so good noise reduction is achieved. In contrast, at high
SNRs the estimated sample covariance matrix contains the direct path target and
coherent reflections which leads to target cancellation. Experiment 2 investigates the
robustness to model violations and employs additional metrics which further highlight
the degradation caused by the MPDR method.

Experiment 2

As is well-known, sound fields in real-world situations do not normally conform to
the idealised situation of having a single dominant noise type. To evaluate the effect
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Interferer
Male @
−67.5◦

Interferer
Female @

67.5◦
Babble
directions

Steering
error

1 X all
2 X X all
3 22.5◦. . . 157.5◦

4 X 22.5◦. . . 157.5◦

5 X all 7.5◦

6 X all 15◦

Table 1: Test case definitions.

of model violation in complex scenarios, the following additional noise sources are
defined: (a) an interferer (female speech) at φ = 67.5◦ (to the listener’s left) and (b)
babble noise only from the seven DOAs to the listener’s left (i.e., 22.5◦≤ φ ≤ 157.5◦).
In this experiment, the levels of the target and all active noise sources are equal, except
sensor noise, which is always present at −20 dB with respect to the target. Table 1
defines which noise sources are active in each test case. Test Case 1 has the same
spatial arrangement as in Experiment 1, but with the levels of intefering speech and
babble being equal. Test Case 2 adds a second interferer. Test Case 3 has non-isotropic
babble with no interferers, and Test Case 4 reinstates the male interferer to the right.
Test Cases 5 and 6 are the same as Test Case 1 but consider the effect of missteering,
where the listener’s head is not directly facing the desired source.

In addition to the improvement in fwSegSNR, we also consider the improvements
in short-time objective intelligibility measure (STOI) (Taal et al., 2011) and PESQ
(ITU-T, 2003).

Figure 2 shows that in Test Cases 1 to 5, all metrics suggest that the proposed method
outperforms the baseline. Only in Test Case 6, where the steering misalignment is
15◦, do the STOI and PESQ metrics suggest that performance of the proposed method
is degraded. Whilst the MPDR method is effective at reducing the noise, as indicated
by its superlative improvement in fwSegSNR, both the STOI metric and informal
listening suggest that there is also signal degradation. Consistent with the literature (Li
et al., 2003; Ehrenberg et al., 2010), the MPDR beamformer is particularly sensitive
to steering errors as seen in Test Cases 5 and 6.

DISCUSSION AND CONCLUSIONS

The proposed model of the sound field as the weighted sum of three idealised
components allows a wide range of real-world sound fields to be approximated.
By constraining the allowed DOA of the plane-wave component to a fixed set of
candidates, the potential for signal cancellation during desired speech activity is
minimised. When the desired speech is dominant, provided the steering error is not
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too large, it is likely that the DOA coinciding with the look direction is selected, even
in the presence of reflections, and so the MVDR’s distortionless constraint ensures
that no cancellation of the direct path wave-front occurs. The remaining components
of the covariance matrix are a combination of diffuse and spatially white noise and
so are as benign as a fixed beamformer. When the desired speech is not dominant or
absent, the contribution of the plane-wave component allows the estimated covariance
matrix to adapt, at least to some extent, to the irregularities of the encountered sound
field, improving the attenuation compared to an ideal model of the noise distribution.
By continuously adapting the estimated covariance matrix, the method can respond
immediately to changes in the acoustic scene. Combining the proposed method with
head-tracker informed beam-steering as in Moore et al. (2018), it is feasible to relax
the requirement for the user to face the target source. Simulation experiments using
measured reverberant impulse responses and challenging levels of realistic noise show
that the proposed method outperforms a fixed beamformer by ≥1 dB over a range of
acoustic scenarios and is more robust than a conventional, diagonally loaded MPDR
beamformer.
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