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The development of spatially registered auditory maps in the external nucleus
of the inferior colliculus in young owls and their maintenance in adult animals
is visually guided and evolves dynamically. To investigate the underlying
neural mechanisms of this process, we developed a model of stabilized
neoHebbian correlative learning which is augmented by an eligibility signal
and a temporal trace of activations. This 3-component learning algorithm
facilitates stable, yet flexible, formation of spatially registered auditory
space maps composed of conductance-based topographically organized neu-
ral units. Spatially aligned maps are learned for visual and auditory input
stimuli that arrive in temporal and spatial registration. The reliability of visual
sensory inputs can be used to regulate the learning rate in the form of an
eligibility trace. We show that by shifting visual sensory inputs at the onset
of learning the topography of auditory space maps is shifted accordingly.
Simulation results explain why a shift of auditory maps in mature animals
is possible only if corrections are induced in small steps. We conclude that
learning spatially aligned auditory maps is flexibly controlled by reliable
visual sensory neurons and can be formalized by a biological plausible
unsupervised learning mechanism.

INTRODUCTION

Identifying a location of a visual or auditory event in our environment is advantageous
for an organism to orient in space. Localizing a visual stimulus is a rather easy task,
since the receptor array (sensorial neurons on a sensory organ) is topographically
ordered. Hence, the location of a stimulus can be directly read out by its position
on the retina. However, in the auditory domain localizing a stimulus is a complicated
task that involves intensive computational steps to overcome two major obstacles.
The challenge in sound source localization begins at the stage of the cochlea. The
tonotopically organized receptor array represents neighboring frequencies but not
adjacent spatial locations. Consequently, the location of a sound source cannot be
directly inferred from its array position but needs to be computed using cues created
by the head shadow, the distance between the ears or their shape. However, these
cues lack associations to absolute locations in space. In order to establish such
associations the brain utilizes vision as a guidance signal (Knudsen and Knudsen,
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1989). Whenever a visual stimulus appears in temporal registration with an auditory
stimulus, an association is established between the spatial location of the visual
stimulus and computed auditory localization cues to form a topographically ordered
representation of auditory sound source locations. Such associations can be found
in the external subdivision of the inferior colliculus of barn owls in the form of a
topographically aligned map of auditory space (Knudsen and Konishi, 1978).

Here, we present a neural model of auditory map formation in owls utilizing an
unsupervised learning rule that evaluates correlations of sensory input streams. Map
structures are defined as 1-dimensional arrays of topographically arranged single com-
partment neurons. Activations of model neurons are defined by rate-based changes
of first-order conductance-based membrane dynamics and their transformation into
firing rates. The model architecture is based on physiological findings in barn owls
(Knudsen and Brainard, 1991; Hyde and Knudsen, 2000; Linkenhoker and Knudsen,
2002) and incorporates parts of external nucleus of the inferior colliculus (ICx) and the
optic tectum (OT) to represent auditory and visual inputs, respectively. Unsupervised
learning is defined by a neoHebbian 3-factor rule that incorporates an eligibility
control signal, a co-activation plasticity mechanism, and a temporal trace of post
synaptic activation (Gerstner et al., 2018). Together, these components enable stable
map alignment of auditory space instructed by visual guidance signals.

Simulation results demonstrate the ability of the model to resemble behavioral and
physiological findings in barn owls and explain the difference in remapping of
auditory space in juvenile and adult owls when their visual field is shifted. Specifically,
we show that the ability of remapping critically depends on the receptive field size
of auditory neurons. This explains why a gradually induced prismatic shift enables
remapping of auditory space in mature animals whereas a single large shift only works
for juvenile owls.

METHODS

The alignment of auditory space maps in barn owls occurs at the level of the midbrain
between the central nucleus of the inferior colliculus (ICC) and ICx. This alignment
is guided by retinotopic visual inputs from the OT. The ICC comprises tonotopically
ordered neurons that are responsive to certain values of localization cues such as
interaural time or level differences. By combining these cues over different frequency
channels and associating them with visual information provided by the OT, the ICx
forms a topographical map of auditory space.

Inputs to ICx model neurons at location j arise from ICC (audio) and OT (vision)
and are denoted sA

j and sV
j , respectively. Each input is a one-dimensional vector of

N = 40 entries that describes the input conductances to the ICx neuron population
of size N. This number is chosen to achieve high input resolution while keeping the
computational cost in a feasible range. Visual inputs from the OT are topographically
structured whereas inputs from the ICC are tonotopical but show a topographical orga-
nization of localization cues (Feldman and Knudsen, 1997). Therefore, independent
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auditory sA
j (xt) and visual sV

j (xt) sensory input at location j can be modeled by

s{A,V}j (xt) = exp(
−( j− xt)

2

2 ·σ2
{A,V}

), (Eq. 1)

where xt is the location at time t and σ{A,V} the spatial extent of an auditory and visual
stimulus on the receptor array, respectively. To ensure similar input strengths the input
vectors are min-max normalized. An input location x is randomly chosen between 0
and N and for each such a location a Wiener process (initial setting: σWP = 1,µ = x)
is applied that randomly selects five locations in the vicinity of x. Finally, these five
locations are consecutively presented, each for 100 time steps (sufficient time to reach
a steady state of the membrane potential), before choosing another initial location x.
This process is repeated N times.

One model assumption is an increasing energy level in the visual map of space over
time due to maturation of the visual system. This incremental increase of energy of
visual inputs is modeled by filtering the visual input signal with a temporal high-pass
filter according to ŝV

j = sV
j ∗ f (∗: convolution operator) ,where

f (t) =
1

(1+ exp(−(10−4 · t−1)))
. (Eq. 2)

This leads to increased plasticity of the learning for more reliable visual input signals.
The auditory input signal is fed to an ICx model neuron r j, whose membrane potential
change is defined by:

τ ṙ j =−α · r j +(β − r j) ·
N

∑
i=0

w ji · sA
i , (Eq. 3)

where sA
i describes the auditory input, weighted by connection weight w ji over all

input locations. Parameter τ = 0.1 defines the membrane time constant, α = 1.0 is a
passive membrane leakage rate and β = 1.0 describes a saturation level of excitatory
inputs (standard neuron parameters). To create a firing rate, membrane potential r j at
time t is transformed by an output function g(r j(t)) = [r j(t)]+ = max(r j(t),0). Note,
that visual inputs do not drive the neuron auditory map neurons in accordance with
neurophysiological findings (Knudsen and Knudsen, 1989).

The essential part of the model is a 3-component neoHebbian learning algorithm
(Gerstner et al., 2018), that facilitates learning for spatially and temporally aligned
inputs. Empirical exploration was used to choose best learning parameter values.
Weights are initialized with a large receptive field kernel, w ji = exp(−(i− j)2

2·202 ), so
that each receptive field ranges over the entire input space to replicate juvenile owls’
receptive fields. The weight adaptation ∆w for each learning step is governed by the
3-component structure

∆w ji = η · [post j(t) · prei(t) · f b j(t)− stabilizer j(t)], (Eq. 4)
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with η = 0.005 denoting the learning rate, post j(t) = r̄ j(t) is the temporal trace value
of the map activity r j, prei(t) = sA

i is the activity of the auditory input neuron and
f b j(t) = FV

j (t) is an eligibility signal. This eligibility signal is driven by the activity
of a spatially coincident visual neuron and the overall energy in the visual map,
FV

j (t) = ŝV
j (t) ·E(t) where is E(t) is the normalized total energy in the visual map

and is calculated by E(t) = ∑
N
j ŝV

j (t)/∑
N
j sV

j (t). Here, ŝV
j (t) is the current activation of

the visual input after filtering (see Eq. 2) and sV
j (t) the maximal input strength before

filtering. This mechanism guarantees that learning takes place only for reliable visual
signals and for spatially aligned auditory and visual events (Brainard and Knudsen,
1993). The temporal trace value r̄ j is calculated by r̄ j(t+δ t)= (1−λ ) · r̄ j(t)+λ ·r j(t)
to achieve more robust map formation. λ = 0.5 denotes the trace parameter that
defines the influence of previous values of r j on its current state r̄ j.

The term stabilizer j(t) is added to counterbalance the correlative 3-component
learning and is defined by stabilizer j(t) = r̄2

j ·w ji to pull weights towards constant
energy by a rate proportional to the energy of the map neuron activation. By collecting
all terms in the weight adaptation mechanism we arrive at a modified Oja learning rule
(Oja, 1989) that incorporates an eligibility control signal to regulate the map learning
process.

Connections from one neuron to another can degrade over time which is modeled by a
decay function that is applied in each time step: w ji(t+δ t) = (1−10−6) ·w ji(t). Here,
w ji(t) can become very small but never 0. However, it is possible that connections
eventually vanish completely. We model this process by w ji = 0, for w ji < 0.01. To
compensate for this degeneration the model is endowed with a process that allows for
reestablishment of already vanished weights. This is achieved by increasing weight
values randomly in close vicinity to weights which values exceed a given threshold:

ŵ ji = exp(
−(i− argmaxi( j, i))2

σ2
syn

),

∆w ji =

{
ŵ ji · |N (0, ŵ ji)| ·φsyn, ŵ ji ≥ tsyn
0, otherwise (Eq. 5)

where σsyn = 2.8 defines the range in which new weights can be created, tsyn = 0.5
is a threshold a weight has to exceed to initiate the process and φsyn = 0.1 defines a
scaling factor of the noise. This process is repeated every 1000th time step.

RESULTS

In the following, we present simulation results that, first, show learning abilities of
our model for spatially and temporally correctly aligned visual and auditory inputs.
This learning of normal responses is used in a second experiment as a reference for
comparison with learning for shifted visual inputs. In a third experiment, we show

152



Auditory Map Alignment

how the regained ability of shifting an auditory map for incrementally shifted visual
inputs in adult owls depends on receptive field size of auditory neurons.

At the beginning of each simulation experiment the auditory system is in its juvenile
state (reduced energy in visual map, broad receptive fields of auditory neurons, no
auditory map alignment) and develops over the course of 50,000 time steps to its
mature state (maximal energy in visual map, narrow receptive fields of auditory
neurons, and supposedly aligned auditory map). To demonstrate correct functionality
of the model, we present a learned auditory map for temporally aligned, non-shifted
visual and auditory inputs (Fig. 1 A). It represents correct map alignment in healthy
owls. The abscissa indicates the spatial offset of the alignment from the predicted
normal. The predicted normal describes the location offset between auditory and
visual signals and is 0◦ for a perfectly aligned auditory map (spatial coincidence). Data
presented here is collected by repeatedly presenting different sound source locations
and measuring the response of auditory map neurons.

Temporal coincidence between both inputs determines how well an auditory map can
be aligned. For large temporal offsets the map alignment fails due to reduced activity
of map neurons at the moment the visual signal would facilitate learning. Temporal
coincidence is especially crucial if stimulus locations are randomly sampled from the
environment (high σWP value of Wiener process). However, if consecutive auditory
visual events are in spatial vicinity (they are spatially correlated, low σWP value)
correct map alignment is still possible even for large offsets (Fig. 1 E).

Experiments with juvenile owls show that if a constant shift of visual inputs is
introduced by prismatic goggles, the alignment of the auditory space map is shifted
accordingly. This indicates a visually guided learning of auditory space (Brainard
and Knudsen, 1993). We replicate this experiment by inducing a shift of the visual
inputs by 10◦ or 20◦, respectively, right at the beginning of the learning. Through
its role as a guidance signal, the visually shifted input leads to a shifted alignment of
the auditory space map (Fig. 1 B). However, this shift only occurs when introduced
in juvenile owls, but remains ineffective when tested with adult owls (Linkenhoker
and Knudsen, 2002). Our model exhibits the same behavior when presented with
a non-shifted visual input during development (until time step 100,000 to simulate
sufficient adult experience) followed by a 15◦ shifted visual input. Map realignment
fails since the shifted input is outside the receptive field range of auditory neurons
(Fig. 1 C). Unlike the ineffective alignment modification in case of a single large shift,
incremental small shifts in the visual input can lead to map realignment in adult owls.
Simulations with multiple small incremental shifts of the visual signal demonstrate
that our model is able to realign the auditory map of space in each consecutive step
(Fig. 1 D).

Our results indicate that this phenomenon can be ascribed to the receptive field size of
auditory map neurons. According to Hebbian learning, new connections and thereby
realignment can only be learned if there is a temporally coincident pre- and post-
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synaptic activity of neurons (Hebb, 1949). If a large shift is introduced, the activity
location of postsynaptic neurons in the auditory map and of visual input neurons do
not coincide, since the stimulus location is outside of the spatially aligned auditory
neuron’s receptive field. In contrast, if small shifts are introduced the stimulus location
might still be in the receptive field range of the auditory neuron which leads to an
activation and therefore a relearning of connections. We tested this hypothesis by
measuring the maximal shift step size depending on the receptive field size of the
auditory neurons. For each receptive field size (range [0.5 ·σA,7 ·σA] ≈ [4px,40px])
different shift steps (range [5◦,25◦] = [5px,25px]) are tested and the maximal possible
shift is measured (a shift is successful if the activity location of the map neurons
corresponds to the induced shift). In total, we ran 8 simulations and calculated the

Fig. 1: Left and middle column. Population tuning curves of ICx neurons
to different auditory stimulus locations relative to each neuron’s predicted
normal response are shown (as in Knudsen (1998)). Normal responses of a
neuron are derived from the learned map for temporally aligned, non-shifted
inputs. Lines depict mean of model neuron responses. Standard deviation
in colored area. In all plots the blue line is the normal response plotted
for easier comparison. A depicts model responses for temporally aligned,
non-shifted inputs. B shows responses for various shifts of visual inputs.
In C green line plots model responses for a shifted visual input of 15◦ in
adult animals. D shows model responses for incremental shifted inputs in
adult animals. Right column. E map alignment quality over autocorrelation
value of inputs (ordinate) and their temporal offset (abscissa). Perfect map
alignment is indicated in bright yellow, no alignment in dark blue. F depicts
maximal shift over receptive field width when shift is introduced at a mature
state.
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mean maximal shift for each receptive field size. For increasing receptive field size
the maximal shift step becomes proportionally larger (Fig. 1 F).

DISCUSSION & CONCLUSION

We presented a neuron model that learns aligned auditory maps of space by applying
a 3-component neoHebbian correlative learning rule to its visual and auditory inputs.
Previous investigations of auditory map alignment demonstrated that alignment is
possible with a map adaptation cue in a spiking neuron model (Huo and Murray,
2009) or with a simple, unconstrained Hebbian learning rule for visual and auditory
inputs (Witten et al., 2008). Our model differs in that it directly uses visual inputs as a
guidance signal for map alignment and is able to explain the unaffected map alignment
in adult owls when a large prismatic shift is induced versus the ability to realign for
incremental shift step size.

Simulation results demonstrated the model’s ability to successfully learn aligned
auditory maps of space for temporally and spatially aligned visual and auditory
sensory inputs. Due to the introduced eligibility signal, visual inputs do not drive
responses of auditory map neurons but merely elicit learning for coincident stimuli,
which is important for close replication of biological findings.

The incorporated trace rule can compensate for small temporal offsets between the
visual and auditory inputs. However, for large temporal offsets, results indicate that
the success of learning strongly depends on the spatial autocorrelation of the input
locations. That is, if auditory and visual inputs are not randomly sampled in space
but are chosen according to a Wiener process with small σWP, correct map alignment
is still possible. This implies that learning is enhanced for stimulus locations that
show strong autocorrelation. When transferring our results to real world scenarios,
this enhancement is of special interest since audio-visual events rarely happen to
occur at just a single location, followed by other random locations but are likely to
happen in spatial vicinity. Therefore, such an enhanced learning capability for strongly
autocorrelated input locations seems to facilitate learning of real world stimuli.

It has been shown experimentally that the ability to shift the auditory map alignment
is reduced for adult animals (Linkenhoker and Knudsen, 2002). Our model results
predict that the receptive field size of the auditory neurons is responsible for this
reduction and it can serve as an index of maximal shift step size for visual inputs
that can still induce map realignment. This prediction could be tested by varying the
prismatic shift step size and determining the receptive field size for adolescents of
different ages. If our prediction is correct the two values should correlate.

Despite the presented results, at the moment our model is incapable to maintain
already established maps and to quickly readjust to normal vision as it has been
demonstrated for owls in (Knudsen, 1998). However, we argue that this could be
achieved by adapting the learning algorithm and extend the input by elevation cues.
Together with a N-methyl-D-aspartate (NMDA) receptor signal which in addition to
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the eligibility signal could control the learning, we expect the model to further extend
its capability to resemble neurophysiological and behavioral studies.
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