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The goal of audio coding is to efficiently describe an auditory experience 
while enabling a faithful reconstruction to the listener. The subjective quality 
compared to the original is measured by established psychoacoustic tests 
(BS.1116, 2015; BS.1534, 2015) and the description cost is measured in 
number of bits. As it is much cheaper to describe coarse scale signal 
properties than temporal fine structure (TFS), tools like noise fill, spectral 
extension, binaural cue coding, and machine learning have increased 
performance of audio codecs far beyond the first generation based on masking 
principles (e.g., mp3). In this evolution, implicit knowledge on hearing has 
been acquired by codec developers, but it has become increasingly difficult 
to construct tools to predict subjective quality. For example, it is yet unknown 
which aspects of the TFS that are essential for the listening impression to be 
preserved. To explore these issues, we study models of auditory 
representations with the mindset from audio coding. Given a method to solve 
the inverse problem of creating a signal with a specified representation, 
evaluating by listening can immediately reveal strengths and weaknesses of a 
candidate model.  

INTRODUCTION 
Coarse scale properties of audio signals are cheaper to describe than temporal fine 
structure (TFS; Moore, 2019). This is exploited in modern audio coding systems. But 
which aspects of TFS are important to make two signals sound the same to us?  In this 
paper, we walk through current and emerging audio coding methods and suggest an 
audio coding inspired methodology to improve perceptual modelling. We illustrate 
this method by an example study regarding tonality which is inspired by research on 
audio texture synthesis, McDermott et al. (2009). For the sake of clarity, we will only 
discuss mono audio signals. 

AUDIO CODING 
The goal of audio coding is to convey an auditory experience faithfully while keeping 
the information rate low (see Fig. 1).  A typical source is cinematic content comprising 
a mix of speech, music, and environmental sounds. Ideally, the decoded content 
should be perceptually indistinguishable from the original content. This is called 
transparency. Subjective testing such as BS.1116 (2015) can be used to quantify the 
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deviation from this ideal case. For the joint evaluation of several codecs and for larger 
deviations MUSHRA, BS.1534 (2015), is a better choice. Even in a modern scenario 
where video coding dominates the bit budget, a lower bitrate for a given perceived 
quality is preferred.  
 

 
 

Fig. 1: Audio coding systems encode original sound sources into bits which 
can be transmitted and decoded into sound again at the receiver end. The 
combination of an encoder and decoder is called a codec. 

Currently deployed tools 
The concept of a time-frequency (TF) tile is often used to describe a segment of the 
audio signal in a perceptually motivated frequency band. In practice a filter bank or 
transform is employed to achieve this. The TF-tiles represent a sufficiently high 
dimensionality in signals space so that the number of TF-tiles needed to cover the 
whole signal is much smaller than the number of samples in the signal, see Fig. 2, 
panel a). Sharing information inside each TF-tile therefore enables bitrate savings. In 
codecs based on waveform approximation, such as mp3, (MPEG-1 layer III), the 
shared information is a quantization step size which controls the approximation error, 
and masking principles are employed to make the approximation error inaudible. For 
high bitrates this method can potentially preserve all aspects of TFS. Significant 
bitrate savings are obtained by only conveying the energy of the TF-tile, and letting 
the decoder synthesize a random noise signal in the TF-tile according to this energy 
target. This method is named noise fill. As only a very coarse scale envelope of the 
signal is preserved, the method rarely offers a high quality. Panel b) of Fig. 2 illustrates 
the difference between these two methods. Parametric coding improves on this 
situation by adding sinusoids and transients to the repertoire of synthetic signals. 
Finally, spectral extension, illustrated by panel c) of Fig. 2, consists of copying TFS 
from lower frequencies and adjusting tonal-to-noise ratio with parametric methods. 
This method is cheap and works surprisingly well. For more details, we refer to the 
recent tutorials by Brandenburg et al. (2013), and Herre and Dick (2019). 
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Fig. 2: Currently deployed audio coding tools. Panel a) shows the sharing of 
information in a TF-tile, panel b) the difference between waveform 
approximation and noise fill, and panel c) the principle of spectral extension. 

Machine learning tools 
The application of machine learning to audio synthesis typically consist of training a 
generative model that maps features or labels into sounds. As depicted in Fig. 3, one 
can think of these methods as inverse sound classifiers.    
  
  

 

 
 
 
 
 
 

 
 

Fig. 3: Conceptual machine learning based sound synthesis. 

Recent speech coding examples use vocoder features, such as linear predictive coding 
(LPC) based spectrum, pitch and degree of voicing (Kleijn et al. 2018; Klejsa et al. 
2019). Autoregressive probability density models are trained on large speech datasets 
to approximate the distribution of signal samples conditioned on these features. 
Probabilistic sampling of the resulting model offers a substantial quality improvement 
over a manually crafted parametric vocoder synthesis. Example results from Klejsa et 
al. (2019) are given in Table 1. 
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Codec SILK SampleRNN AMR-WB Vocoder 

Bitrate [kb/s] 16 8 23.05 8 

MOS-LQO 4.41 3.48 4.39 3.67 

MUSHRA 80 78 67 34 
 

Table 1: Bitrates, average of predicted mean opinion scores (MOS-LQO) 
from the objective tool POLQA, P.863 (2018), and subjective mean 
MUSHRA scores for four codecs (from Klejsa et al., 2019). 

In terms of subjective MUSHRA scores, the machine learning codec based on the 
autoregressive model SampleRNN performs on par with the waveform codec SILK 
operating at twice the bitrate, while the parametric vocoder synthesis performs 
significantly worse. However, the mean opinion scores (MOS-LQO) predicted by 
POLQA contradict the subjective scores with respect to the comparison between the 
vocoder and SampleRNN.  

PROBLEM 
There is a gap in our understanding of auditory perception. The results in Table 1 offer 
one recent example of the frequently encountered phenomenon that the subjective 
performance of audio coding is not predicted well by tools such as POLQA and PEAQ 
(BS.1387, 2001), especially when mechanisms beyond masking are exploited by the 
codec. Our hypothesis is that TFS aspects are central for explaining this gap. As many 
model-based predictors of the results of psychoacoustic experiments compare stimuli 
in an auditory representation, (e.g., spectrogram or auditory filter bank, see P.863, 
2018; BS.1387, 2001; Dau et al. 1996), such auditory representations will be the 
object of our study.  

PROPOSED METHOD 
As a complement to the established validation procedures based on targeted 
psychoacoustic testing, we here propose a method for evaluation and successive 
improvement of auditory representations based on the idea of building a mock-up 
codec, Fig. 4. For an original sound 𝑠 having the auditory representation 𝜃(𝑠), the 
synthesis process consists of finding a sound 𝑢 with 𝜃(𝑢) ≈ 𝜃(𝑠). This “synthesis by 
analysis” procedure was discussed by Slaney (1995) and is also the basis of 
spectrogram inversion methods, in which case the representation 𝜃(𝑠) is a 
spectrogram (Decorsière et al., 2015).  
Synthesis by analysis is an ill-posed inverse problem for which a solution is typically 
obtained only after many iterations starting from a random noise or manually crafted 
first guess. Whereas this approach might not be feasible for a deployable codec, off-
line synthesis for the purpose of basic research is. Once the synthesis method is 
constructed, the idea is to run audio signals through the system and evaluate it as a 



 
 
 

Learning about perception of temporal fine structure by building audio codecs 

145 
 

codec. The machine listener provided by the analysis can then be compared directly 
to the human listener.  

 

Fig. 4: Synthesis by analysis aims at producing a signal 𝑢 given the analysis 
𝜃(𝑠) of an original signal 𝑠 by solving 𝜃(𝑢) ≈ 𝜃(𝑠). 

EXAMPLE STUDY 
To illustrate proposed method, we study audio representations derived from a 
framework which already includes tools for synthesis by analysis and whose signal 
analysis resembles that of many other models.  
McDermott et al. (2009) evaluated combinations of time invariant summary statistics 
for description of stationary audio textures by the method of Fig. 4. For synthesis, an 
initial white noise signal 𝑢! was iteratively modified to bring the representation 𝜃(𝑢") 
closer to 𝜃(𝑠) than 𝜃(𝑢"#$). Most statistics were derived from envelope values 
updated every 2.5 ms in a filter bank with 38 bands of perceptually motivated 
resolution. The quality of textures containing tonal components was not captured well 
in these experiments. Given our interest in TFS of arbitrary nonstationary signals, and 
with inspiration from the literature on pitch perception modelling regarding tonality,  
(Meddis and O'Mard, 1997), we consider two deterministic representations.  

A. Baseline: measure envelopes every 2.5 ms for all 38 bands as used by 
McDermott et al. (2009). 

B. Extension: add one lag 𝑇 and the value 𝜌(𝑇) of 𝜌, the normalized 
autocorrelation function (ACF) for each of the envelope-normalized subband 
signals every 20 ms.  

Fig. 5 depicts the analysis block diagram for both cases. The lag 𝑇 can be selected in 
many ways, and the specific steps taken to avoid picking lags related only to the center 
frequency of the subband are described in Fig. 6. For synthesis, we apply the method 
of iterative modification of an initial white noise signal. Gradient descent is used for 
the ACF data.  
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Fig. 5: Analysis algorithm for baseline (solid) and extended (solid and 
dashed) representations.  

Fig. 6: Example of lag search for sawtooth signal with period 300 samples at 
48 kHz sampling. The top panel depicts the windowed subband signal for a 
band with center frequency 1895 Hz. In the bottom panel, we consider the 
local maxima (crosses) of the windowed signal’s ACF (solid curve), 
discarding maxima below the ACF of the absolute value of the impulse 
response of the subband filter (dotted curve). For a better usage of the interval 
between 0 and 1 where 𝜌(𝑇) = 1 denotes maximum tonality, the maximum 
value (circle) is divided by the value of the ACF (dashed curve) of the 
subband ACF window leading to the final selection (star). 

RESULTS 
Informal listening to inputs and synthesized signals for speech, music, and 
environmental sounds reveals that the relatively detailed envelope representation 
(Fig. 7A) alone is not sufficient to capture tonality, while a clear improvement is 
obtained in voiced parts of speech and tonal parts of music by using the extension 
(Fig. 7B) including one lag and the corresponding ACF value per band per 20 ms. 
Spectrograms for an example signal are depicted in Fig. 7.  
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Fig. 7: Spectrograms of input and synthesis from (A) baseline and (B) 
extended representation for a segment of singing over guitar. 

DISCUSSION 
The example study shows that informal listening to the outputs of a mock-up codec 
for general audio provides immediate guidance on the construction of audio 
representations with the ambition to capture perceptually relevant aspects of audio. A 
MUSHRA test could be used to verify the shortcomings of the baseline representation 
(A) relative to the extended representation (B) whose own shortcomings would then 
also be revealed. For example, we expect both representations to fail for aspects 
requiring analysis of cross-frequency band coherence of TFS. We believe that the 
proposed method could be used in the construction and refinement of more well-
developed models of TFS aspects of hearing, as well as improved predictors of 
subjective quality for pairs of perceptually similar signals as those available in the 
samples link of Klejsa et al. (2019). 
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