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In this paper, we present a speech intelligibility model based on automatic
speech recognition (ASR) that combines phoneme probabilities obtained
from a deep neural network and a performance measure that estimates the
word error rate from these probabilities. In contrast to previous modeling
approaches, this model does not require the clean speech reference or the
exact word labels during test time, and therefore, less a priori information.
The model is evaluated via the root mean squared error between the predicted
and observed speech reception thresholds from eight normal-hearing listeners.
The recognition task in both cases consists of identifying noisy words from a
German matrix sentence test. The speech material was mixed with four noise
maskers covering different types of modulation. The prediction performance
is compared to four established models as well as to the ASR-model using
word labels. The proposed model performs almost as well as the label-based
model and produces more accurate predictions than the baseline models on
average.

INTRODUCTION

The intelligibility of speech is crucial for our social interaction, and it is an important
measure for a diagnosis of hearing deficits through speech audiometry and for
the optimization of speech enhancement algorithms in hearing aids or cochlear
implants. Accurate models that predict the speech intelligibility (SI) in the presence
of different masking noises are desirable since they can quantify the outcome of such
an optimization and could, therefore, reduce the requirement of SI measurements that
are usually time-consuming and costly.

Several models for SI prediction have been proposed that take into account the
signal-processing strategies of the auditory system such as the speech-intelligibility
index (SII; ANSI, S3 22-1997, 1997); the extended SII (ESII; Rhebergen and
Versfeld, 2005) which extends SII to account for temporal modulations; the short-
time objective intelligibility (STOI; Taal et al., 2011), which is based on correlations
between original and degraded signal; and the multi-resolution speech envelope power
spectrum model (mr-sEPSM; Ewert and Dau, 2000), which incorporates temporal
modulation filters in different frequency bands.
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Schubotz et al. (2016) compared these models in a study to determine how well they
can predict the speech reception threshold (SRT), which is the signal-to-noise ratio
(SNR) at which 50% of words presented are correctly recognized.

An alternative modeling approach combines signal extraction based on auditory prin-
ciples with pattern matching algorithms borrowed from automatic speech recognition
(ASR). For example, Barker and Cooke (2006) introduced a glimpsing model in which
the above-threshold time-frequency patches (glimpses) were used as features for a
backend that combines a Gaussian mixture model (GMM) with a hidden Markov
model (HMM) to produce a transcript from the input glimpses, which was compared
to listener responses. A GMM-HMM approach dubbed Framework for Acoustic
Discrimination Experiments (FADE) was proposed in (Schädler et al., 2015). This
model produces SRT estimates by retraining a GMM-HMM system at different SNRs,
and by selecting the model that produces the lowest SRT when using the same training
and test sentences.

All previously mentioned models either require separate clean and degraded speech, or
separate speech and noise signals. Motivated by the success of deep learning in ASR,
Spille et al. (2018) proposed an ASR model that combines a deep neural network
(DNN) trained to estimate phoneme probabilities given the acoustic observation with
an HMM. The predictive power of this model exceeded the four baseline models
mentioned above on the dataset collected by Schubotz and colleagues. The root-mean-
square error (RMSE) between measurement and prediction was 1.8 dB on average
when using multi-condition training as well as modulation features, which can be
compared to the RMSE of baseline models in the range of 5.6 to 9.5 dB. The model
is blind with respect to speech because training and test sets are speaker-independent.
Therefore, it marks a step towards reference-free SI models, which could serve as
models-in-the-loop in assisted hearing. A use case for such a model is the constant
monitoring of SI in the current acoustic scene and to identify the speech enhancement
algorithm that is optimal for that scene.

However, it requires the correct labels of the words in the utterance used as model
input. These labels are compared to the transcript produced by the ASR system from
which the recognition accuracy is calculated. For online applications of SI models,
this is an essential limitation of the models.

In this paper, we introduce a model of SI prediction that does not require either the
speech reference or the actual labels of the tested utterances. The model is based on
the DNN-based approach introduced in Spille et al. (2018), but instead of computing
the word error rate (WER), we test a method for estimating the WER directly from the
phoneme posterior probabilities emitted by the DNN. The method explored here was
first proposed for estimating phone error rates (Hermansky et al., 2013) by analyzing
the mean temporal distance or M-measure of phoneme vectors obtained from a neural
network.
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Fig. 1: Building blocks of the modeling approach: Speech intelligibility in
noisy sentences is compared to the estimated SRT. To obtain this estimate,
a DNN is trained as part of a standard ASR system and subsequently used
to measure the degradation of phoneme representations in noise using a
performance measure. From this, the WER of the ASR system is estimated,
resulting in the predicted SRT.

In the current study, we quantify the relation of the M-measure with the WER and
explore if accurate model predictions can be obtained with the DNN alone that
operates on a relatively small temporal context window.

MODEL STRUCTURE

Figure 1 illustrates the structure of the proposed model. In previous work, Spille et al.
(2018) estimated the SRTs from the target speech transcript, and the WER computed
from the output of a regular hybrid ASR system. The components of this system are
summarized below, together with the modification of using the M-measure to drop the
requirement of word labels and estimate SRTs directly from the output of the acoustic
model. The characterization of the acoustic model, together with the respective input
features, closes this section.

ASR-based model of speech intelligibility

In the label-based ASR approach (Spille et al., 2018), the acoustic model was trained
on speech files mixed with different maskers at various SNRs using the Kaldi toolkit†.
A fully-connected feed-forward DNN was used to map the acoustic features to
posterior probabilities of context-dependent triphones. The time sequence of these
probabilities was decoded using an HMM (three states for modeling phonemes and
five for silence) to obtain a transcript of the utterance. This transcript was compared
to the ground truth labels to obtain the word error rate (WER) from this sentence.
By using utterances at various SNRs, a broad range of the corresponding WER
estimations was obtained. These pairs of points were fitted to a psychometric function,
as described by Wagener et al. (1999). SRT values served as a mean intelligibility
predictor and were compared to SRTs obtained in listening experiments.

†The ASR was implemented using the Kaldi speech recognition toolkit (Povey et al., 2011).
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The model proposed in this paper differs from this approach by using the HMM during
the training procedure only, and omitting the HMM (or any other language model)
when predictions were obtained. Instead, a performance measure, as described in the
next section, quantifies the degradation of the phoneme posteriorgrams. This measure
could be informative about the WER and hence, about the SRT too. We hypothesize
that the resulting measure should be sensitive to the SNR, but also show a similar
sensitivity to masking noises similar to human listeners as long as the amount of
training data is sufficient.

Estimating the word error rate

The WER estimation is based on a measure that quantifies the degradation of phoneme
probabilities obtained from a DNN. We chose the mean temporal distance (MTD, also
referred to as M-measure) (Hermansky et al., 2013), which takes into account the
distance of phoneme vectors and averages this distance. The underlying idea is that
acoustically challenging conditions can have a temporal smearing effect on phoneme
representations, i.e., the phoneme vectors become more similar. Acoustically optimal
conditions produce very distinct phoneme activations, which become more distant in
vector space. This distance is captured by the entropy-based divergence averaged over
phoneme vectors in the interval from 50 to 800 ms.

The M-measure accumulates the average divergences of two phoneme posterior
vectors pt−∆t and pt separated by a time interval of ∆t and is defined as

M (∆t) =
1

T −∆t

T

∑
t=∆t

D(pt−∆t ,pt) (Eq. 1)

where T is the duration of the analyzed representation, in this case, a portion of
the posteriorgram. The symmetric Kullback-Leibler divergence is used as distance
measure D between phoneme posterior vectors pt−∆t and pt .

D(p,q) =
K

∑
k=0

p(k) log
p(k)

q(k)
+

K

∑
k=0

q(k) log
q(k)

p(k)
(Eq. 2)

As defined above, p(k) is the k-th element of the posterior vector p ∈ Rk.

We considered 16 values of ∆t per utterance; from 50 to 800 ms in steps of 50 ms.
For short ∆t time spans, divergences are small, indicating neighboring frames often
correspond to the same phoneme. The value increases with time up to a point at
which both vectors p, and q come from different coarticulation patterns, and the curve
saturates.

As the acoustic model is trained to produce triphone posteriorgrams, to be decoded
by the language model when performing ASR, an intermediate step of grouping the
activations was performed to obtain monophone posteriorgrams. It is possible to
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cluster triphones by mapping each transition as a branch of a decision tree, wherein the
roots correspond to the central phoneme of the triphone. Monophone posteriorgrams
of 42 dimensions were obtained by adding the corresponding activations, thus
maintaining the distribution.

Monophone posteriorgrams yield M-measure values comparable to the ones obtained
with the triphone equivalents at a lower computational cost without constraining the
acoustic model of the temporal context if trained to produce monophones directly.

In our previous study (Castro Martinez et al., 2019), we established the correlation
between WER and the M-measure. In this work, we leverage this property, but the
estimator ought to be in the same domain as the word recognition accuracy to estimate
the SRTs and produce similar psychometric curves as human listeners. Given the non-
linearity introduced by the M-measure, a mapping function is required to estimate
WERs. The function used to map the M-measure to WER depends on the acoustic
model and decays exponentially according to the following equation:

WER(M ) = A∗ ek∗M . (Eq. 3)

The initial value A and the decay rate k were calculated on a cross-validation set
comprised of utterances spoken by a speaker not included in the training set mixed
with the same noise maskers described in the following section. Additionally, an
upper boundary of 100 (the highest possible error rate) was imposed.

Features and deep neural network

The ASR system is trained with amplitude modulation filterbank (AMFB) features
that are based on regular mel spectrograms with 40 frequency channels, which are
processed with modulation filters in the range from 5 to 20 Hz (Moritz et al., 2015).
They were chosen since the explicit coding of temporal modulations increased model
performance, especially for the across-frequency shifted speech-shaped noise (AFS-
SSN) masker previously (Spille et al., 2018). AMFB features were used as input
to a DNN, which has the purpose of mapping the acoustic observations to phoneme
probabilities. A fully-connected network (referred to as DNN) with six hidden layers
and 2048 hidden (sigmoid) units was selected to compare this work and the previous
SI prediction model from (Spille et al., 2018). The network was trained to classify
context-dependent triphones; every phone is modeled with three HMM states except
for silence, which uses five states.

The training of the DNN described above was done in up to 20 epochs (stopping when
the relative improvement was lower than 0.001). The starting learning rate was 0.008
(halving it every time the relative improvement was lower than 0.01). A soft-max
layer of approximately 2000 units was attached to the output to produce the most
likely posterior probabilities of each context-dependent HMM state.

An in-house corpus of 10 hours of speech from 20 speakers (10 male, 10 female) with
the syntactical structure of Oldenburg Sentence Test (see next section) was selected as
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a starting point to train the ASR system; sentences from the original speaker were not
contained in the training set.

The training sets comprise of the clean data mixed with random parts of each of the
eight different maskers (as described below) at random uniformly distributed SNRs
ranging from -10 dB to 20 dB, resulting in 80 h of speech material. Two training sets
were created which are based on noises created from a male or female voice. The test
set to evaluate the ASR system was created by mixing eight random sentences from
the speech material with parts of the respective masker for each of the 400 SNR values
uniformly distributed between -30 dB and 20 dB to sample the whole psychometric
function.

SPEECH MATERIAL, MASKERS AND SUBJECTIVE DATA

In this section, the speech material for both training and testing is described, the noise
signals are introduced, and details about the listening tests from which the human
SRTs were calculated by Schubotz et al. (2016) are provided.

Matrix test

Both the listening and ASR tests were performed using the Oldenburger Satztest
(OLSA) (Wagener et al., 1999), which is a matrix sentence test. It consists of 120
utterances produced by one speaker. Target sentences derived from a vocabulary of
50 words equally divided into five categories. For a review of matrix tests in several
languages, please refer to (Kollmeier et al., 2015). Each five-word sentence follows
the fixed structure: <name><verb><number> <adjective><object>, e.g. ”Peter
kauft sechs nasse Tassen” (”Peter buys six wet cups”). Despite being grammatically
correct, these sentences have no semantic context. Moreover, all combinations of
words from each of the five categories can occur; therefore, predicting a sentence
from previous ones is not possible.

Noise maskers

In the study carried out by Schubotz et al. (2016), a set of eight background
maskers was created to evaluate the effect of energetic, amplitude modulation and
informational masking on SI. We took this benchmark to evaluate our SI prediction
model, focusing on four speech maskers described in the following.

First, a stationary SSN with the same long-term spectrum as the International Speech
Test Signal (ISTS; Holube et al., 2010) was used. Second, a sinusoidally amplitude-
modulated SSN (SAM-SSN) was produced by adding an 8 Hz temporal modulation.
The third masker was generated by multiplying the Hilbert envelope of a broadband
speech signal with the SSN (BB-SSN). For the fourth, named across-frequency shifted
SSN (AFS-SSN), the SSN was filtered in 32 frequency channels; subsequently, every
four adjacent channels were multiplied with a different random time section of the
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Hilbert envelope used for BB-SSN‡.

To test the influence of same- or different-gender maskers, all maskers have a male
and female version to match the long-term spectrum of the respective gender. Since
the original ISTS contains female voices only, Schubotz et al. (2016) produced a male
version of ISTS via the STRAIGHT algorithm (Kawahara et al., 2008) to match its
long-term spectrum.

Listening tests

To benchmark the performance of the proposed SI predictor, we compare the results
from the listening tests performed in (Schubotz et al., 2016). These experiments
consisted of characterizing SI as a function of the SRT extracted from the adaptive pro-
cedure proposed by Brand and Kollmeier (2002). Eight normal-hearing participants
(ages between 23-34) participated who were not previously exposed to the speech task;
their hearing thresholds for pure tones did not exceed 20 dB at frequencies between
125 Hz and 8 kHz. During testing, the participants attended 20 OLSA sentences
with an initial SNR of 0 dB; then, the SNR varied depending on the intelligibility
measurement of the previous sentence. The procedure is set to determine the SNRs at
which listeners correctly understand 50% (SRT) and 80% (SRT80) of presented words.
Each SRT resulted from a different set of sentences; in other words, each participant
listened to 40 sentences per noise condition. Finally, the SRTs were averaged across
the listeners to obtain the final SRT and SRT80 values, which are used to trace the
psychometric function of the listeners (described entirely by the SRT and its slope).
The slope of the psychometric function was estimated via a maximum-likelihood
estimator (Brand and Kollmeier, 2002) with the 40 responses for each listener and
masker.

RESULTS

Because the modeling approach presented in this paper is based on estimating the
WER (cf. Figure 1), we first analyze if the error rate from the ASR is related to the
predicted one based on the M-measure (Figure 2), where each data point corresponds
to the error rate for eight matrix sentences.

While the WER with the SSN masker is overestimated and AFS-SSN data is
underestimated, we observe a clear relationship between estimated and ASR WER
for each masker. Additionally, the mapping is most sensitive at lower word error rates
as the mapping function is a decaying exponential constrained to an upper boundary
of 100.

To quantify the model performance, we compare the psychometric functions of the
listeners to the approach using ASR generated transcripts and the proposed approach
(Figure 3).

‡resulting in eight different adjacent modulation bands
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Fig. 2: Relation of estimated WER derived from phoneme probabilities and
measured ASR WER for four different maskers.

When comparing both models, the overestimated WER values for the SSN result in
a shift to a lower SNR for the new model (top left panel in Figure 3), while the
shift to higher SNRs for the AFS-SSN and BB-SSN maskers is a reflection of an
underestimation of the WER (noticeable in Figure 2).
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Fig. 3: Psychometric functions or NH listeners (mean in black, individual
curves in gray), the ASR-based model that used a priori knowledge in the
form of transcripts (blue) and the proposed model that estimates the SRT from
phoneme probabilities without using the transcript (red).
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(A) Average SRTs of listeners and proposed model in dB
SSN SAM-SSN BB-SSN AFS-SSN

female -7.5 -17.1 -14.1 -9.2
AMFB-M-Measure -9.5 -20.0 -14.3 -9.1

male -8.2 -17.7 -14.9 -9.3
AMFB-M-measure -10.0 -18.5 -13.0 -7.2

(B) Root-mean-squared error of observed and predicted SRTs
baseline models Spille et al This work

SII ESII STOI mr-sEPSM AMFB AMFB-M-measure

male 6.0 2.2 8.7 4.0 1.6 1.7
female 6.0 2.8 8.5 8.5 0.9 1.7

avg. 6.0 2.5 8.6 6.2 1.3 1.7

Table 1: (A) SRTs of normal-hearing listeners and the corresponding SRT
prediction for the proposed ASR-based models. (B) SRT prediction error for
baseline models, the label-based previous model and the proposed approach.
The rows female and male correspond to the maskers derived from speech
from the female or male speaker, respectively (cf. section on noise types)

These effects, however, seem to be small and provide a good match with the human
data (gray lines in the figure); this is also reflected by the RMSE between predicted
and observed SRTs, calculated for four baseline models, as shown in Table 1. In
Table 1(A), the average SRTs of listeners are compared with the ones yielded by
the proposed model, referred to as AMFB-M-measure. The models trained on the
female noise maskers are matched to the corresponding female normal-hearing SRTs;
likewise, the male results were compared to a model trained on male noise maskers.
In both setups, SSN and SAM-SSN, the predicted SNRs were lower than the observed
ones, whereas the opposite behavior occurs with the BB-SSN and AFS-SSN noise
maskers.

We compute the root-mean-square error (RMSE) between observed and predicted
SRTs to measure the precision of the proposed model in all noise conditions shown in
Table 1(B). Among the baseline models, ESII yields the lowest error with an average
of 2.5. Both DNN-based models show lower RMSE than the previous models. The
model from Spille et al. (2018), with an average RMSE of 1.3 dB, remains the closest
to the human observed SRTs; the female version produces almost half the error as
the male counterpart; the same pattern is observed in the mr-sEPSM model. For SII,
STOI, and our proposed model, the error difference between the genders is very small.
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Note that the DNN-based model was trained as a gender-independent speech with
gender-dependent maskers; thus, it produces consistent predictions for both male and
female maskers.

DISCUSSION

The proposed model produces accurate predictions while it does not require clean
speech reference or the transcript of the utterance that is evaluated. Moreover, because
the model was trained on speech data without semantic context, it could potentially
generalize to other speech tests. However, in contrast to existing models, it requires
a relatively large amount of training data in the range of 80 hours, and it is unclear if
predictions can be obtained for SI across languages. It might, therefore, be challenging
to apply this approach to low-resource languages without optimizing the training
procedure. In related work targeting listening effort, the method of using phoneme
probabilities was, however, successful for predicting the listening effort of the German
matrix sentence test with fine-tuning using English data (Huber et al., 2018), which
indicates that across-language prediction could potentially work if the languages are
phonetically not vastly different. An advantage of the proposed model is that it
produces absolute predictions for the SRT, again in contrast to the baseline models
that are normalized using the prediction for a reference condition, in this case, the
stationary SSN.

In the future, the approach could be used as a model-in-the-loop (i.e., it could monitor
and estimate the SI resulting from different processing strategies and settings in
hearing aids and select the strategy that most likely maximizes SI). However, this
would require the prediction of SI for hearing-impaired listeners, while the current
model implementation has only been tested for normal-hearing listeners. A simple
strategy to take into account the hearing loss that is reflected in a listener’s audiogram
would be to add frequency-dependent noise to mask the signal properties that are not
accessible to the individual listener. Optimally, the corresponding calculations should
be carried out on mobile hearing aid hardware. In previous research, we have shown
that running at least one feed-forward neural network can be achieved on a hearing aid
co-processor (Castro Martinez et al., 2019). However, more efficient net topologies
such as time-delay neural networks (Peddinti et al., 2015) need to be considered in the
future, as well as taking into account hearing loss, given that a comparison of different
processing algorithms requires at least two networks can be used simultaneously.

SUMMARY

This paper explored a modeling approach for SI prediction based on ASR without the
requirement of a transcript in the model. It was shown that the model is suitable
to predict the SRT of normal-hearing listeners with very similar accuracy to the
prediction performance of an ASR-based model that used a priori knowledge in the
form of transcripts. This achievement was enabled by measuring the degradation
of frame-level phoneme representations obtained from a DNN. Our model also
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outperforms four established baseline models in four masker types with different
types of modulation. Future research should focus on a wider range of maskers and
take into account the computational complexity of the approach, which needs to be
considered for real-time applications of SI prediction. As the approach was only
tested for normal-hearing listeners, we also need to investigate if the model can be
extended for predicting SI of (aided) hearing-impaired listeners, which would be a
significant step towards using it as model-in-the-loop for real-time optimization in
assistive hearing.
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