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Computer audition has made major progress over the past decades; however it
is still far from achieving human-level hearing abilities. Imagine, for example,
the sounds associated with putting a water glass onto a table. As humans, we
would be able to roughly “hear” the material of the glass, the table, and perhaps
even how full the glass is. Current machine listening approaches, on the other
hand, would mainly recognise the event of “glass put onto a table”. In this
context, this contribution aims to provide key insight into the already made
remarkable advances in computer audition. It also identifies deficits in reaching
human-like hearing abilities, such as in the given example. We summarise the
state-of-the-art in traditional signal-processing-based audio pre-processing and
feature representation, as well as automated learning such as by deep neural
networks. This concerns, in particular, audio diarisation, source separation,
understanding, but also ontologisation. Based on this, concluding avenues are
given towards reaching the ambitious goal of “holistic human-parity” machine
listening abilities – the next generation of audio intelligence.

INTRODUCTION

Typical real-world audio consists of complex combinations of overlapping events
from a variety of sources, creating both clashing and harmonious relationships.
Despite this complexity, humans can, with relative ease, decipher across audio
through understanding, decomposing, interpreting, and ontologisation an abundance of
potentially conveyed messages and their related semantic meanings.

Historically, developments in the field of computational audio understanding (computer
audition) were initially driven by speech analysis, in particular, the field of automatic
speech recognition (ASR). From its inception at Bell labs in the 1950’s with the
“Audrey” system, capable of recognising spoken digits (Davis et al., 1952), through the
considerable advancements during the 1980’s associated with the use of Hidden Markov
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Models (Hansen and Hasan, 2015), and to the recent deep learning revolution (Hinton
et al., 2012), ASR technologies have now matured to the point where they are embedded
in everyday technologies, e. g., SIRITM, CORTANATM, and ALEXATM. A similar
transforming effect has recently occurred through deep learning, in terms of the
immense increase in recognition accuracy and robustness in music analysis (e. g.,
Coutinho et al., 2014), and for the recognition of acoustic scenes and the detection of
specific audio events (Mesaros et al., 2018).

Considering the advances in computer audition throughout the last decades, the time
is now to unite these domains of audio understanding by creating a fully-fledged
across-audio approach, thereby pushing this somewhat overlooked and currently
underdeveloped mode of research to the forefront of intelligent machine understanding.
To date, computer audition approaches have been typically mono-domain focused, with
only consideration for the previously aforementioned domains of speech, music, and
in general in an isolated singular manner. The view proposed here would unify these
domains to truly understand and interpret audio.

The ground-breaking nature of such an “across-audio analysis” approach is the
simultaneous understanding of the entire acoustic scene. Imagine, as an example,
an acoustic scene set in a garage with two people working on repairing a car while
listening to music. An across-audio analysis will isolate the conversation, the music,
and engine noises and then assign relevant state and trait tags to each. For instance, the
music genre and individual instrumentation could be recognised, the age and gender of
each person and their relationship to one another determined, the car’s age, model and
condition identified, and finally the repair duration logged.

In the following, we move quickly through the state-of-the-art in audio analysis
as related to the needed aspects of such a view on the next generation of audio
intelligence: audio diarisation, (audio) source separation, audio understanding, (audio)
ontologisation.

STATE-OF-THE-ART IN AUDIO ANALYSIS

Audio diarisation

Audio diarisation is a generalisation of speaker diarisation to general sound sources,
e. g., vehicles, musical instruments, animals, or background noise types (Reynolds
and Torres-Carrasquillo, 2005). The state-of-the-art is mostly marked by speaker
diarisation, as general audio diarisation is only gaining momentum at this time. Speaker
diarisation thereby is tagging an audio recording of several individuals with speaker
turn information, i. e., to provide information relating to “who is speaking when”.
The dominating trend of the last few years in speaker diarisation research is to find
suitable speaker embeddings which give a reliable multi-dimensional clustering of
speech segments according to speakers. In this regard, the i-vector and Gaussian
mixture model-based approaches (Anguera et al., 2012) are being overtaken by deep
neural network (DNN) feature representations (Bredin, 2017). Note that DNN-based
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speaker embeddings are sometimes called d-vectors, as opposed to i-vectors (Wang
et al., 2017). The advantage of DNNs for speaker diarisation is that they are capable of
simultaneously learning the embeddings, i. e., the feature vectors describing speaker
characteristics, and the scoring function, which represents the similarity between
the embeddings of different segments (Garcia-Romero et al., 2017). Nevertheless,
when comparing different scoring functions for i-vector embeddings, DNNs have been
shown to outperform conventional scoring functions, such as cosine similarity and
probabilistic linear discriminant analysis (Le Lan et al., 2017).

Source separation

Audio source separation is the decomposition of an arbitrary audio signal into several
signals with only a single audio source of interest present in each decomposed part. The
audio source could be a speaker, a musical instrument, a sound produced by an animal
or a vehicle, or background noise, such as breaking sea waves. In most conventional
approaches, a mixture-spectrogram is separated into several source spectrograms. In
the past, nonnegative matrix factorization (NMF; Nikunen et al., 2018) or non-negative
tensor factorisation (Ozerov et al., 2011) have been used for single-channel (monaural)
source separation (Virtanen, 2007), and independent component analysis (ICA) or
multichannel NMF (Nikunen et al., 2018) used for multi-channel audio.

Well-studied aspects of source separation are speech denoising and speech enhancement.
Previous research on speech denoising comprises NMF (Weninger et al., 2012), deep
NMF (Le Roux et al., 2015), recurrent neural network (RNN)-based discriminative
training (Weninger et al., 2014b), long short-term memory recurrent neural
networks (LSTM-RNNs; Weninger et al., 2015), memory-enhanced RNNs (Weninger
et al., 2014a), and deep recurrent autoencoders (Weninger et al., 2014c). Latest
approaches to speech source separation also employ different DNN types, such as feed-
forward neural networks (FFNNs; Naithani et al., 2016), RNNs (Huang et al., 2015;
Sun et al., 2017) or end-to-end (E2E) learning using a CNN- or RNN-autoencoder
instead of the usual spectral features (Venkataramani et al., 2017). Recently, generative
adversarial nets (GANs) were found to be promising in modelling speech (Subakan and
Smaragdis, 2018) and singing sources (Fan et al., 2018). For the task of music source
separation, it was found that both FFNNs and RNNs are suitable, achieving superior
scores in the Signal Separation Evaluation Campaign (SiSEC) music task (Uhlich et al.,
2017). Latest efforts in music source separation employed U-nets, a CNN variant from
the image processing domain (Jansson et al., 2017). Moreover, a weakly labelled data
approach has also been proposed for the task of singing voice separation (Kong et al.,
2017). This approach utilised information about the presence or absence of singing
as given by the output of a diarisation system. Notably, despite the huge amount of
publications in the field of source separation, cross-domain audio signal separation
(i. e., seperation of audio sources with distinct variance in character) is still largely
unexplored.
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Audio understanding

We consider audio understanding to be the task of acquiring a higher level semantic
understanding of acoustic scenes, sound events, speech, and music. We consider audio
understanding the task of acquiring a higher level semantic understanding of acoustic
scenes, sound events, speech, and music. For this task, the aim of understanding the
audio goes beyond the simple identification of speech, music, objects or events and their
respective attributes. The goal, instead, should be to understand the relations between
the elements of an acoustic scene. This understanding includes their relation to each
other as well as their contextual meaning to a listener. For example, two individuals
speaking loudly, followed by door slam and then a person crying, could be understood
as a heated discussion causing emotional implications.

Unlike the field of computer vision, where considerable research has been carried
out on higher-levels of semantic understanding of visual tasks (e. g., visual question
answering (Agrawal et al., 2017), image captioning (Xu et al., 2015)), only a few works
have been realised in the audio domain. One example is the recent work described
in (Drossos et al., 2017), in which an encoder-decoder neural network is used to process
a sequence of Mel-band energies and to compute a sequence of words that describe
a given audio segment. The already proved success of encoder-decoder sequence to
seqence (S2S) architectures for structured prediction tasks such as more general audio
combined with the small number of existing works applying such models to audio
understanding tasks (to the best of our knowledge) creates a window of opportunity for
conducting successful research in applying encoder-decoder for the above-mentioned
tasks.

Audio ontologisation

A core component of an across-audio analysis, for both interpretation and understanding
of acoustic scenes, is multi-domain audio ontologisation. An ontology is a formally
documented knowledge base, which provides a precise description of the concepts
encompassed within a domain, with additional attributes of each concept describing
possible features. Within the machine learning community, ontologisation has been
widely studied and applied in the text analysis domain (Buitelaar et al., 2005), human
activity recognition (Hoelzl et al., 2014), and for “hierarchical” image-understanding
domains (Durand et al., 2007). In the audio domain, however, due to the complexities of
the everyday life soundscapes, most efforts have been focused on specific domains (Han
et al., 2010; Nakatani and Okuno, 1998).

To date, there have been scarce attempts to create complete cross-audio domain
ontologisations of everyday life soundscapes. The AudioSet (Gemmeke et al., 2017)
by Google has been perhaps the most interesting audio ontologisation attempt to date.
It offers an ontologisation of audio events and their relationships within a sub-field,
i. e., classes include; music, animals, human sounds, and the corresponding dependent
children are; rock, dog, and whistling. AudioSet, however, does not include descriptors
of the audio (e. g., the object action, or emotion). This aspect aside, it does provide a
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platform for further and deeper ontologisation by the computer audition community.
Until the release of AudioSet, the majority of works in ontologisation of acoustic scenes
had come from studies focusing on the ontologisation of explicit audio domains, e. g.,
for music genre classification (Raimond et al., 2007), music emotion perception (Han
et al., 2010), and audio features (Allik et al., 2016). Excluding AudioSet, attempts at
multi-domain audio ontologisation have mainly focused on the segregation of speech
and music (Nakatani and Okuno, 1998), or sound objects retrieval (Hatala et al., 2004).

In order to build a basis for ontologising a domain, previous research has commonly
functioned in a manual nature, developing a methodology for collaborative ontology
development via data mining based visual user interfaces, such as Orange WorkFlows
(known as OWLs; Hilario et al., 2009). These methods create a simple “seed” of basic
concepts for the ontology structure (Noy et al., 2006), with further adaptations requiring
huge amounts of collaborative labour, using mechanisms for carrying out discussion
(e. g., polling, and moderators; Farquhar et al., 1997), something which in the long
run can be time-consuming and costly. In an attempt to automate the construction of
an ontology ((known as ontology learning; Gotmare, 2017), there have been efforts
in the field of natural language processing, for intelligent web crawling (Maedche
and Staab, 2001; Ehrig and Maedche, 2003). The web offers a mass of diverse but
fragmented data sources, and targets for this can include Wikipedia, YouTube, and
WordNet (Gemmeke et al., 2017). Such approaches use relevance computation (Zheng
et al., 2008), to prioritise URLs of high relevance to the data which needs to be labelled,
and extract metadata from social media, e. g., comments, tags, or titles. This textual
data is then clustered into groups which may provide meaning to the associated data.
To create these potential clustered groupings, unsupervised learning methods for data
classification have been applied in the past (Vicient et al., 2013), as well as semi-
supervised and active learning methods, in which categories are assigned based on the
most informative instances (Gotmare, 2017).

Until this point, the deep ontologisation of a particular domain has been time-
consuming, requiring a mass of human labour (even the state-of-the-art AudioSet
ontology required a huge amount of manual human effort; Gemmeke et al., 2017).An
across-audio–domain approach will not only improve on the state-of-the-art through
the inherent need for additional and more expansive audio event terminology (e. g.,
body acoustics, animal calls, or automotive functions), but also through more fine-
grained event attributes at both the state (e. g., mood) and the trait (e. g., age) level.
A starting point can be given by exploiting deep learning-based approaches for web
crawling (Amiriparian et al., 2017), and clustering sourced data, as well as intelligent
crowdsourcing approaches to reduce the need for manual labour, in which active
learning is applied to prioritise the most informative instances (Hantke et al., 2017).

TOWARDS THE NEXT GENERATION OF AUDIO INTELLIGENCE

From the above, we conclude that audio is largely being treated as a single-domain
phenomenon, but the ingredients needed for a full-fledged “holistic” and likewise, an
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Fig. 1: Example for an iterative approach to decompose audio interpreting on
different semantic levels of “understanding” to lead to an optimal “holistic”
audio understanding. Imagine a garage with two people working on a car and
listening to music as the (acoustic) scene.

arguably more “human-like” audio understanding are primarily available. In other
words, one mainly needs to put the pieces of the puzzle together, and then feed a learning
system with sufficient audio data. To overcome data sparseness, many approaches
described in the literature use auditory and visual information in tandem to improve the
understanding of video content. In Aytar et al. (2016), a neural network is trained on a
corpus of unlabelled videos to match the representation extracted from the audio part
with that extracted from the visual information by pretrained networks for object and
scene classification. Facilitating such research avenues, there exist a number of video
corpora, that can be used for a multimodal video understanding such as Rohrbach et al.
(2015) and Torabi et al. (2015).

Figure 1 visualises a potential concept towards such holistic audio intelligence.
It uses an example of an acoustic scene, as described in the introduction. The
number and type of sources present in an audio signal are not known beforehand.
Hence, decomposition could be modelled as an iterative process in interaction with
an interpretation component, which is providing information about the signal and
indicating a request for further separation, as illustrated in Figure 1. In the proposed
across-audio-domain iterative decomposition solution, the first step would be to
decompose speech, music, and sound and send separate signals to the interpretation
component. The interpreter would be able to identify the types and then call the
source separation again to decompose the signal events further. The source separation
is aided by weak labels from the diarisation in this context, to know the temporal
occurrences of the fractionally overlapping events. Finally, after the types of the audio
have been classified by the interpretation component, these are analysed deeper with
respect to states, finding that potentially parts are missing from a semantically higher
perspective. This deeper analysis allows for an iterative process. Figure 2 additionally
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Audio 
Source Sound

Music
Speech

Vehicle Car

Train

Human

Non-
Human

Jazz

Pop

Ma-
chine

Non-
Ma-

chine

Traits: States:
Brand Speed
Size Honking
Age Direction

Traits: States:
Foxtrott Aroused
2018 Fast

Traits: States:
Age Emotion
Height Health

Fig. 2: Example of an ontology that consequently attributes audio sources
states and traits – not only for speech as is the current usual state-of-literature.
In this depiction we see that the audio source is decomposed into 3 sub-
sources; speech, music and sound, which are then each further decomposed.
For example, one of the “sound” sources is noted as being mechanical, vehicle,
car, and the car is further labelled for its brand, as well as action e. g., Speed.

exemplifies audio ontologies that could suit the need for a complete and “holistic”
audio understanding. Note that the concept of state and trait assignment as known from
speech analysis is consequently extended to general audio sources such as sound or
music – after all, sound always has a source which has certain traits and is in certain
states.

CONCLUSION

We discussed the state-of-the-art in audio intelligence focusing on audio understanding
when it comes to general audio which often consists of a blend of speech and/or music
and/or sound. We surveyed in nutshell components which we believe are crucial to
lead to a general audio understanding including audio diarisation, source separation,
understanding, and ontologisation. From this, we showed a potential approach on how
to combine the pieces to lead to a more advanced form of “cross-domain” audio analysis
with a rich ontology unified across the audio domains. To realise such a concept, recent
deep learning methods seem well suited, such as learning weakly supervised in an
end-to-end manner. Once realised, such an audio intelligence will find an abundance of
potential applications from retrieval to robotics, and beyond.
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