
 

 
*Corresponding author: js2251@cam.ac.uk. Currently at the Department of Neurosciences, University of 
Cambridge 
 
Proceedings of the International Symposium on Auditory and Audiological Research (Proc.  ISAAR), Vol.  
7: Auditory Learning in Biological and Artificial Systems, August 2019, Nyborg, Denmark. Edited by A. 
Kressner, J. Regev, J. C.-Dalsgaard, L. Tranebjærg, S. Santurette, and T. Dau. The Danavox Jubilee 
Foundation, 2019. © The Authors. ISSN: 2596-5522. 

The implementation of efficient hearing tests using machine 
learning  
JOSEF SCHLITTENLACHER1,* RICHARD E. TURNER2 AND BRIAN C. J. MOORE1 
1 Department of Experimental Psychology, University of Cambridge, Downing 
Street, Cambridge, CB2 3EB, UK 
2 Department of Engineering, University of Cambridge, Trumpington Street, 
Cambridge, CB2 1PZ, UK 

Time-efficient hearing tests are important in both clinical practice and 
research studies. Bayesian active learning (BAL) methods were first proposed 
in the 1990s. We developed BAL methods for measuring the audiogram, 
conducting notched-noise tests, determination of the edge frequency of a dead 
region (fe), and estimating equal-loudness contours. The methods all use a 
probabilistic model of the outcome, which can be classification 
(audible/inaudible), regression (loudness) or model parameters (fe, outer hair 
cell loss at fe). The stimulus parameters for the next trial (e.g. frequency, level) 
are chosen to yield maximum reduction in the uncertainty of the parameters 
of the probabilistic model. The approach reduced testing time by a factor of 
about 5 and, for some tests, yielded results on a continuous frequency scale. 
For example, auditory filter shapes can be estimated for centre frequencies 
from 500 to 4000 Hz in 20-30 minutes. The probabilistic modelling allows 
quantitative comparison of different methods. For audiogram determination, 
asking subjects to count the number of audible tones in a sequence with 
decreasing level was slightly more efficient than requiring Yes/No responses. 
Counting tones yielded higher variance for a single response, but this was 
offset by the higher information per trial. 

INTRODUCTION 
Time efficiency is an important attribute of any test. Making a test time efficient is 
important if it is to be used in clinical practice, and it also reduces costs and allows 
bigger sample sizes with higher accuracy in research studies. 
Most traditional psychophysical methods, like the method of adjustment, magnitude 
estimation (e.g., Stevens, 1956) or transformed up-down methods (Levitt, 1971), 
sample at discrete points only. For example, one frequency is tested at a time when 
measuring an audiogram or the percentage correct is determined at one level at a time 
when measuring a psychometric function. Von Békésy (1947) circumvented this 
limitation for the audiogram by slowly sweeping the signal frequency over time and 
decreasing the level when the subject indicated that the tone was heard and increasing 
it otherwise. Although this procedure is time efficient and samples at informative 
points around the threshold, it is problematic because subjects may be slow to respond 
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when they stop/start hearing the signal, there may be lapses of attention that affect the 
measurements even after attention is restored, and the subject may “loose what to 
listen for”, since only near-threshold stimuli are presented. 
An ideal procedure would sample at informative points and on continuous scales but 
also clearly separate stimuli between trials. An early Bayesian procedure, QUEST 
(Watson and Pelli, 1983), estimated the detection threshold given the data obtained 
already. The level used in the next trial was the current estimate of threshold. Similar 
maximum-likelihood methods were developed (e.g., Brand and Kollmeier, 2002). 
To our knowledge, the first Bayesian active-learning (BAL) method in psychophysics 
that used Bayesian principles for both modelling the response and choosing the 
parameters for the next trial was introduced by Cobo-Lewis (1997). His method was 
designed to classify a subject into one of nine audiometric groups, e.g., “normal 
hearing” or “mild to severe sloping loss”. The stimulus for the next trial was chosen 
to maximise the mutual information between the current estimate and that after 
obtaining one more response. To do this, the posterior probabilities for all candidates 
that were considered for the next trial were calculated and the one with the least 
expected entropy (Shannon, 1948) was chosen. Cobo-Lewis validated the method 
with numerical simulations. 
Kontsevich and Tyler (1999) presented a BAL method for estimating the threshold 
and the slope of a psychometric function, and, like Cobo-Lewis, maximised mutual 
information when choosing the stimulus for the next trial. They evaluated the 
procedure with simulations and with real subjects. At that time, computational limits 
restricted BAL methods to one independent variable only, which in this case was 
sound pressure level. 
Houlsby et al. (2011) presented general BAL methods for classification and 
preference tasks that used Gaussian Processes (GPs; Rasmussen and Williams, 2006) 
for modelling a subject’s response probabilistically. GPs can be multidimensional, 
i.e., model several independent variables, and incorporate prior beliefs about the 
mean, the smoothness of the boundaries between classes and the covariance between 
data points. The latter allows the experimenter to determine how the threshold changes 
along a given dimension. Houlsby et al. (2011) also presented a formula for 
calculating mutual information without the costly computation of the expected 
posterior entropy. This was done by exploiting the commutativity of mutual 
information. The mutual information between the outcome and the model parameters 
does not require computation of the posterior entropy across the whole space for each 
candidate data point and outcome (H(X|Y)); evaluating the conditional entropy for 
each data point given the current GP (H(Y|X)) is considerably faster. 
This approach worked well for determining the similarity between images (Houlsby 
et al., 2013) and has also been used in auditory applications. For example, GPs have 
been used to search for the optimal setting of a hearing aid (Nielsen et al., 2014; Jensen 
et al., 2019) and for determining audiograms (Song et al., 2015; Cox and de Vries, 
2015; Schlittenlacher et al., 2018a), equal-loudness contours (Schlittenlacher and 
Moore, 2019), and psychometric functions (Song et al., 2017). Other BAL 
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approaches, often using parametric models but also maximising mutual information 
or something similar, have been used to determine auditory filter shapes (Shen and 
Richards, 2013; Shen et al., 2014), equal-loudness contours (Shen et al., 2018) and 
the edge frequency of a dead region (Schlittenlacher et al., 2018b). 
The remainder of the paper is organised as follows: First, we briefly present the basics 
of GPs and BAL hearing tests using the example of determination of an audiogram 
using Yes/No responses and a “Counting” method (Schlittenlacher et al., 2018a). 
Second, we present a new BAL test for determining auditory filter shapes and its 
evaluation using eleven hearing-impaired subjects. In contrast to the procedure of 
Shen and Richards (2013), our procedure estimates the auditory filter shape not just 
at a single frequency but over the whole range from 500 to 4000 Hz. The results 
suggest that this can be done with good accuracy within 20-30 minutes. 

PREVIOUS WORK AND MATHEMATICAL BACKGROUND 

Binary classification for a Yes/No audiogram 
An audiogram is an estimate of the detection threshold of tones as a function of 
frequency. A GP yields a probabilistic estimate (a Gaussian distribution with a mean 
and variance) of signal detectability for each point in the two-dimensional frequency-
level space:  

 𝑓(𝑥∗, 𝒙, 𝒚) = 𝐺𝑃(𝑚(𝑥∗, 𝒙, 𝒚), 𝑘(𝑥∗, 𝒙)) (Eq. 1) 

with 𝑥∗ a point in frequency-level space, f the GP function at 𝑥∗ given already obtained 
responses y at frequencies and levels x, m the mean and k the kernel, which determines 
the covariance between two data points. We chose a mean based on the data already 
obtained, a linear covariance in level, which represents the fact that detectability 
increases with level, and a squared-exponential kernel in frequency with a length scale 
of 0.5 octaves, which represents the fact that the threshold varies smoothly with 
frequency. 
Equation 1 gives the GP function in latent variable space, which spans (-∞,∞). In order 
to yield detection probabilities, it was squashed through a likelihood function  

 𝑝"(𝑥∗, 𝒙, 𝒚) = 0.01 + 0.98Ф(𝑓(𝑥∗, 𝒙, 𝒚)) (Eq. 2) 
with Ф denoting the Gaussian cumulative density function (CDF) and ph the 
probability of 𝑥∗ (a tone) being reported. Equation 2 produces values between 0.01 
and 0.99, accounting for potential lapses in attention that lead to pressing the wrong 
button independent of 𝑥∗. The linear covariance was scaled so that the Gaussian CDF 
had a standard deviation of 3 dB, thus yielding a common shape for psychometric 
functions. 
Equation 1 requires approximate inference when used for classification. We did this 
using expectation propagation (EP; Minka, 2001), with Laplace approximation 
(Williams and Barber, 1998) as a fall back when EP did not converge. Except for the 
mean, the hyperparameters were not optimized during the BAL process in order to 
provide stability, especially when early responses were wrong. 
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The procedure presented here is also applicable to regression tasks such as magnitude 
estimation and preference tasks such as paired comparisons. For regression, equation 
2 is not necessary, and for preference tasks equation 2 needs to be replaced by an 
appropriate alternative (Chu and Ghahramani, 2005). For further details of GPs, see 
Rasmussen and Williams (2006). MATLAB code for the Yes/No audiogram is 
available on github.com/cambridge-mlg/BALaudiogram. The code requires the 
GPML toolbox (Rasmussen and Nickisch, 2010). 

Policy for choosing the next trial 
Intuitively one would place the level of the stimulus for the next trial close to 
threshold. However, the outputs of Equations 1 and 2 also give a variance, allowing 
us to choose regions where the current model is not confident. There are two major 
sources for a lack of confidence: no or inadequate sampling of a certain frequency 
range; and inconsistent responses by the subject. 
Ideally, the stimulus for the next trial should minimise the expected entropy in the 
model after the response for that trial. Houlsby et al. (2011) showed that this gain in 
information can be expressed as the mutual information between the expected 
response y* and the model f given the obtained data D (x and y) and next data point 𝑥∗ 

 𝐼(𝑓, 𝑦∗|𝑥∗, 𝐷) = 𝐻(𝑦∗|𝑥∗, 𝐷) − 𝔼#~%&𝑓'𝐷([𝐻(𝑦∗|𝑥∗, 𝐷)] (Eq. 3) 

In contrast to evaluating the expected entropy of the posterior directly, which requires 
evaluating one GP for each possible outcome and candidate data point, evaluating the 
expected entropy of the response (last term in equation 3) only requires a single GP, 
using the data obtained already. Equation 3 provides an efficient way of looking one 
step ahead. Less myopic policies that look several steps ahead may further speed up 
BAL procedures, but this is usually computationally intractable. 

Increasing the information per trial 
In a binary task like responding “Yes” or “No”, the maximum information per trial is 
1 bit. It is possible to increase the information per trial by increasing the number of 
possible responses. Schlittenlacher et al. (2018a) presented a variant of the audiogram 
task where the subject was asked to count the number of pulses heard, with possible 
counts ranging from 0 to 6. The maximum information per trial in this task is 2.8 bit:  

 𝐻 = −∑ 𝑝(𝑥))𝑙𝑜𝑔*𝑝(𝑥))+
),-  (Eq. 4) 

where N is the number of different response possibilities and p(xi) is the probability 
of the i-th response. This upper limit is reached when all responses have equal 
probability and no data have been obtained so far. The additional information can be 
offset by bigger variance in the responses; it is probably more difficult for a subject 
to count than to select between two alternatives. Nonetheless, the counting procedure 
converged more quickly towards the ground truth (which was assumed to be the final 
estimate after 100 or 120 trials) than the Yes/No procedure, with a root-mean-square 
difference (RMSD) less than 5 dB after only 20 trials. 
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Another popular task in psychophysics is the two-interval two-alternative forced-
choice (2I-2AFC) task. For an audiogram, a tone would be presented in one of two 
intervals and the subject would have to indicate the interval in which the tone was 
presented. This procedure reduces the effects of the response criterion of the subject. 
However, correct responses may result from lucky guesses, which reduces the 
information gained per trial. The response can be modelled as a binary channel where 
one crossover probability is 0 (there is no wrong response when a tone is heard) and 
the other crossover probability is half the probability that a tone is not heard (a correct 
guess). The information gained per trial without any prior knowledge is 

 𝐼 = 𝐻. B
-
*
+ -

*
𝑝"C − [(1 − 𝑝")𝐻. B

-
*
C + 𝑝"𝐻.(1)] (Eq. 5) 

where ph is the probability that the tone is heard and Hb is the binary entropy. The first 
term is the entropy of the output and the second term is the entropy of the output given 
the input and collapses to 1- ph. I has a maximum (also known as the channel capacity) 
of 0.32 bit for ph = 0.6. 
The 2I-2AFC task requires about three times as many trials to get the same amount of 
information as the Yes/No task, which is why it is rarely used in BAL applications. 
Furthermore, the response criterion effects in a Yes/No task can sometimes be taken 
into account by model parameters. When estimating auditory filter shapes, for 
example, the response criterion is incorporated in the “efficiency” parameter K 
(Patterson, 1976), leaving the shape parameters of interest unaffected. 

METHOD FOR ESTIMATING AUDITORY FILTER SHAPES  
A BAL method was developed for estimating the thresholds of sinusoidal signals in 
notched noise as a function of notch width for signal frequencies between 500 and 
4000 Hz, on a continuous scale. After the test, auditory filter shapes were estimated 
from the data. The new method was assessed with hearing-impaired subjects, who 
were also tested using a conventional method for comparison. 

Subjects 

Eleven hearing-impaired subjects participated, three female and eight male, aged 55 
to 82 years (mean: 70 years). None reported any ear disease or trauma, except for S6 
who reported having had a ruptured ear drum. They were paid to participate. They 
were tested using their better-hearing ear, based on the mean audiometric threshold 
across 500 to 4000 Hz. Audiograms were obtained using the counting method 
(Schlittenlacher et al., 2018a) described above. Audiograms are depicted by dashed 
lines in Figure 2. 

Stimuli and apparatus 
The experiments took place in a double-walled sound-attenuating chamber. The 
stimuli were generated digitally with a sampling rate of 48000 Hz and a resolution of 
24 bits, converted from digital to analog form by an M-Audio Delta 44 audio interface 
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(Cumberland, RI), and attenuated by 15 dB with a manual attenuator. They were 
presented monaurally via a Sennheiser HDA200 headset (Wedemark, Germany). 
The task was to detect a pure-tone signal in a notched-noise masker. The signal 
consisted of three pulses with a duration of 150 ms each and an interval of 100 ms 
between them. The duration of the noise was 850 ms. It started 100 ms before the first 
signal pulse and finished 100 ms after the last pulse. The signal pulses and the noise 
had 20-ms raised-cosine rise/fall times. The signal level (Ls) was 15 dB SL and the 
signal frequency (fs) varied from 500 to 4000 Hz or the frequency at which the 
audiogram reached 40 dB HL for S1 to S6 or 50 dB HL for S7 to S11. The higher 
signal levels for S7 to S11 were allowed after estimating the loudness of the stimuli 
for S1 to S6, using the model of Moore and Glasberg (2004). Only 0.5% of the stimuli 
had a loudness level above 80 phon. For S7 to S11, 0.6% of the stimuli had a loudness 
level above 80 phon and none had a loudness level above 90 phon. The masker 
consisted of two noise bands, one centred below the signal frequency and one above, 
each with a bandwidth of 0.4fs. The frequency differences between the signal 
frequency and the upper edge of the lower noise band or the lower edge of the upper 
band were chosen to give five symmetric and four asymmetric notch configurations. 
These frequency differences, expressed as a proportion of fs, were (0|0), (0.1|0.1), 
(0.2|0.2), (0.3|0.3), (0.4|0.4), (0.1|0.3), (0.3|0.1), (0.2|0.4) and (0.4|0.2). The level of 
the noise (Lm) was an independent variable but was bounded so that at most 0.05% of 
the samples of the entire stimulus were clipped and the level was at most 95 dB SPL. 
Lm was defined as the sound pressure level in a 1-Hz wide bin, i.e. the spectrum level.  

Procedure 
After the audiogram was obtained, the subjects did the notched-noise BAL test. Then, 
they repeated the notched-noise BAL test but using only the (0.2|0.2) notch, to check 
the consistency of the estimates. After this, notched-noise thresholds were determined 
using a 2-up/1-down procedure (Levitt, 1971) for the symmetric notches at fs = 1400 
Hz, with the (0.2|0.2) notch in the second and last run. The total test time was about 2 
hours including breaks and all tests were conducted in one session. 

Notched-noise Bayesian active-learning test 
There were three intervals in each trial, separated by 100 ms, containing the signal 
only, the noise only, and the signal plus noise. This was done to allow the subject to 
know what to listen for, since the signal varied in frequency from trial to trial. The 
task was to indicate whether or not the signal was present in the third interval 
(Yes/No). 10% of the trials did not contain the signal in the third interval to give an 
estimate of false positives. While sounds were played, a blue rectangle appeared on 
the screen in the first and second intervals, and a green rectangle in the third interval. 
Before the BAL procedure commenced, fs and Lm were chosen by simple rules for a 
few trials. The following procedure was repeated for each notch condition: (i) fs was 
1000 Hz and Lm was -20 dB SPL. Lm was increased by 20 dB or decreased by 10 dB, 
depending on the response, and this was continued (but with the lower limit of Lm set 
to -30 dB SPL) until a Yes and No response were obtained for fs = 1000 Hz; (ii) fs 
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was set to 2000 Hz and Lm to the mean level used for the two previous trials; (iii) fs 
was set to the highest frequency used with that subject and Lm was set either 10 dB 
below or above the level used for fs = 2000 Hz, depending on the response for that 
frequency; (iv) Lm was decreased or increased by 10 dB until both a Yes and No 
response were obtained; (v) fs was set to 500 Hz and a procedure similar to that for 
the highest frequency was used, except that Lm was first set to the same value as used 
for fs = 2000 Hz. This typically required 10 trials or less per notch condition. 
After the initial grid was completed for each of the nine notch conditions, a GP was 
calculated for each notch condition. The hyperparameters of the GP, namely the mean, 
covariance and shape of the CDF, were the same as for the Yes/No audiogram 
(Schlittenlacher et al., 2018a, see above), namely a linear covariance in Lm, a squared-
exponential covariance in fs with a length-scale of 0.5 octaves and a likelihood 
function that allowed for lapses. 
The parameters for the next trial, namely the notch condition, fs and Lm, were chosen 
to yield the highest mutual information about the threshold as a function of notch 
condition and fs. This was the same as in Schlittenlacher et al. (2018a), except that the 
maximum was chosen out of nine GPs instead of one (see also Houlsby et al., 2011). 
The procedure terminated after 594 trials (540 signal trials + 54 catch trials, an average 
of 60 per notch condition). 

2-up/1-down tests 
Thresholds were also estimated using a 2I-2AFC 2-up/1-down adaptive procedure 
(Levitt, 1971) for the symmetric notches, i.e. (0|0), (0.1|0.1), (0.2|0.2), (0.3|0.3) and 
(0.4|0.4). The (0.2|0.2) notch condition was tested twice, as the second and last runs. 
The other notch conditions were run in random order. Ls was 15 dB SL and fs was 
1400 Hz. Lm was changed by 5 dB until the second reversal, then by 3 dB until the 
fourth reversal and by 1 dB for the remainder. The procedure terminated after the 10th 
reversal. The average of Lm at the last four reversals was taken as the threshold. 

RESULTS 
For the BAL test, the 50% detection probability of the GP for each notch condition 
was taken as the threshold for that condition. This provided nine thresholds at each 
signal frequency, sampled in steps of 0.1 octaves. These were used to estimate 
auditory filter shapes using a model with three parameters, pl and pu, which define the 
steepness of the lower and upper skirts, respectively, and K, which characterises 
detection efficiency (Glasberg and Moore, 1990). This simple model does not allow 
for the flatter “tail” of the auditory filter, so the results for the (0.4|0.4) notch were not 
used in the analysis. The individual values of pl and pu are shown in Figure 1. Lower 
values indicate less sharp filters. 
As expected, the pl and pu values (black lines) are generally smaller than expected for 
normal-hearing subjects (grey lines), especially for the higher signal frequencies, for 
which the hearing losses were often greater. For S10 and S11, the value of pu increased 
markedly for the highest frequency tested, which is unrealistic. This reflects the fact 
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that the upper slope of the auditory filter is not well defined using the notched-noise 
method when the lower slope is very shallow (Glasberg and Moore, 1990).   

 
Fig. 1: Black lines show estimated values of pl (solid lines) and pu (dashed 
lines). Grey lines show model predictions for normal-hearing subjects. 
 

 
Fig. 2: Solid lines show OHCL values derived from pl and pu using the model 
of Moore and Glasberg (2004). Dashed lines show the audiometric thresholds. 

The pl and pu values can be related to the amount of hearing loss due to outer hair cell 
dysfunction (OHCL), using the model of Moore and Glasberg (2004); smaller values 
of pl and pu indicate greater OHCL. Figure 2 shows these relations. For a typical 
cochlear hearing loss, OHCL is about 90% of the audiometric threshold for hearing 
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losses up to about 55 dB. Consistent with this, the estimated values of OHCL were 
usually close to the audiometric thresholds except for S6, who probably had a 
conductive component to her hearing loss. 
The experiment was terminated after an average of 60 trials per notch condition. The 
estimated auditory filter width was calculated after each trial and divided by the final 
estimate. The inverse was taken if the ratio was smaller than 1. Figure 3 shows the 
geometric mean ratio across subjects. The ratio drops below 1.12, representing a small 
error, after 30 trials per notch condition, which could be obtained in about 20-30 
minutes given that the whole test with nine notches took 48-61 minutes. 

  
Fig. 3 (left): Ratio between estimated auditory-filter width after n trials per 
notch and the final estimate, plotted as a function of n. The inverse was taken 
if the ratio was smaller than 1. The solid line shows the geometric mean across 
subjects and the grey area shows the geometric standard deviation. 
Fig. 4 (right): Difference between the threshold for the second BAL for the 
(0.2|0.2) notch only and the threshold for that notch obtained in the main test. 
The black and grey lines show the mean and individual results, respectively. 

The BAL was re-run using the (0.2|0.2) notch width to assess consistency and 
repeatability. The differences between main test and re-test are shown in Figure 4. 
The average difference was 0.4 dB and the root mean square difference (RMSD) was 
1.8 dB. The slightly higher mean noise level at threshold for the second run may 
indicate a small learning effect. 
Thresholds for the five symmetric notch conditions were estimated at 1.4 kHz using 
a 2I-2AFC 2-up/1-down procedure. The differences between thresholds obtained with 
this procedure and with the BAL method are shown in Figure 5. The overall difference 
was 2.1 dB and the RMSD was 4.0 dB. A small difference would be expected since 
the 2-up/1-down procedure tracked the 71% correct point in a 2AFC task while the 
BAL method estimated the 50% point on the psychometric function for the Yes/No 
procedure. The difference did not vary significantly across notch conditions, as 
confirmed by a within-subjects analysis of variance, F(4,40) = 1.25, p = 0.31, ηp2 = 
0.11. The mean difference between the first and second runs for the (0.2|0.2) notch 
with the 2-up/1-down procedure was 0.2 dB and the RMSD was 1.2 dB. 
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Fig. 5: Difference between the thresholds at 1.4 kHz obtained using the 2-
up/1-down procedure and the BAL method for the five symmetric notches. 
Bars show the mean across subjects and symbols show individual results. 
 

DISCUSSION 
The proposed BAL notched-noise method proved to be consistent; thresholds for the 
(0.2|0.2) notch were similar when estimated in isolation or as part of the main 
procedure including all notch conditions. Furthermore, differences between the BAL 
method and the 2-up/1-down procedure were small and similar across notch 
conditions. Systematic differences across conditions do not affect estimates of the 
auditory-filter shape, but only affect the “efficiency” parameter, K. 
The BAL method proved to be fast, yielding reliable estimates of the auditory-filter 
shape across three octaves in less than 30 minutes. For comparison, it would take 
approximately the same amount of time to estimate the auditory filter shape at a single 
frequency using a conventional 2I-2AFC, 2-up/1-down procedure. 
Figure 2 shows that, for the subjects with presumed cochlear hearing loss, the derived 
values of OHCL were close to the audiometric thresholds, as expected. They were 
sometimes higher than the audiometric threshold, perhaps because the Counting 
method was used for the audiogram, and this typically gives slightly lower thresholds 
than the Yes/No method. 
Instead of using nine independent two-dimensional GPs, one could use a single three-
dimensional GP, exploiting covariance between thresholds for the different notch 
conditions and possibly making the test even faster. However, more low-dimensional 
GPs have the advantage of being computationally less expensive, an important aspect 
given the extensive computation that is required between trials. Furthermore, only one 
of the nine GPs needed to be updated after each trial. 
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CONCLUSIONS 
BAL methods have the potential to introduce tests into clinical practice that previously 
took too much time. In addition, they increase the information provided since they are 
not limited to a grid. The tests described here have been shown to be reliable and valid, 
making them useful for scientific research, allowing more information to be collected 
in a given amount of experimental time. 
The auditory-filter test described here gives information that may be useful for more 
personalised initial fitting of a hearing aid. For example, the frequency-dependent 
gains can be chosen based on the shapes of the auditory filters so as to reduce across-
channel masking for speech-like sounds (Fletcher, 1953). Together with other BAL 
tests for the audiogram, dead regions, or fine-tuning an initial fitting (see 
introduction), this provides a potential tool for personalised precision medicine. 
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