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Consonant perception has typically been measured using consonant-vowel 
(CV) syllables presented in a stationary noise masker at various signal-to-
noise ratios (SNRs). Recently, a microscopic speech perception model was
proposed (Zaar and Dau, 2017) and shown to account well for consonant
perception data obtained in stationary noise. However, unlike stationary
noise, real-life interfering sounds typically exhibit strong fluctuations. The
present study therefore investigated the effects of highly non-stationary noise
on consonant perception and assessed the predictive power of the model in
such conditions. Normal-hearing listeners were presented with 15 Danish
CVs in 5-Hz interrupted noise at SNRs of −20, −10, 0, and 10 dB. Five
different CV onset times with respect to the noise bursts were considered,
differing in the amount of induced simultaneous and forward masking. As
expected, the consonant recognition scores were inversely related to the
amount of simultaneous masking. However, even with minimum
simultaneous masking, a substantial loss of consonant recognition was
observed at low SNRs, suggesting a forward masking effect. The model,
which employs adaptive processes in the front end, accounted for these
experimental data to a large extent. The experimental paradigm and the model
may be useful for assessing temporal effects of hearing-aid algorithms on
consonant perception.

INTRODUCTION 

Speech perception has often been measured using sentences as target signals, thus 
typically providing listeners with context and lexical information that can be exploited 
to compensate for the sparse acoustic information available in acoustically adverse 
conditions. To exclude such effects of high-level linguistic processing and, instead, 
focus solely on the relationship between the available acoustic cues and the speech 
percept, consonant perception has been measured, typically using consonant-vowel 
combinations (CVs, e.g., /ta, ba/) at various signal-to-noise ratios (SNRs) in stationary 
noise (e.g., Miller and Nicely, 1955; Phatak and Allen, 2007; Zaar and Dau, 2015). 
The resulting consonant recognition and confusion data are useful for investigating 
the characteristics and confusability of consonant cues. Furthermore, consonant 
perception tests have been shown to be particularly useful for assessing hearing-aid 
processing due to the consonants’ short-term and high-frequency characteristics (e.g., 
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Schmitt et al., 2016). Zaar and Dau (2017) proposed a microscopic speech perception 
model to account for consonant perception data, which combines an auditory 
processing front end proposed by Dau et al. (1997) with a correlation-based, 
temporally dynamic template-matching back end. The model was shown to account 
well for the effects of stationary noise (Zaar and Dau, 2017) as well as for spectral 
effects of hearing-instrument signal processing (Zaar et al., 2017) on consonant 
recognition and confusions.  

In contrast to the stationary masking noise employed in the above-mentioned 
consonant perception studies, real-life interfering sounds are typically highly non-
stationary. While stationary noise introduces only simultaneous masking, non-
stationary noise may additionally lead to forward and backward masking of consonant 
cues. As fine temporal differences presumably play an important role in this context, 
perceptual effects induced by non-stationary interferers may be particularly useful for 
evaluating the temporal effects of hearing-aid processing. In the present study, the 
effect of highly non-stationary noise on consonant identification was measured in 
normal-hearing (NH) listeners. Special attention was paid to the temporal positioning 
of the considered CV speech tokens relative to the noise envelope’s minima and 
maxima. Furthermore, the predictive power of the microscopic speech perception 
model by Zaar and Dau (2017) was evaluated for non-stationary interferers based on 
the experimental stimuli and the collected data. 

EXPERIMENTAL METHOD 

Stimuli 

The target speech consisted of fifteen consonant-vowel (CV) tokens: /bi, di, fi, gi, hi, 
ji, ki, li, mi, ni, pi, si, ʃi, ti, vi/ spoken by one male and one female talker (thirty 
utterances in total). The speech tokens were a subset of the ones employed in a 
previous study (Zaar and Dau, 2015) and were selected based on maximum 
intelligibility in stationary noise. The noise was composed of five 100-ms long bursts 
with 1-ms raised-cosine ramps, separated by 100-ms silent gaps (corresponding to a 
5-Hz repetition rate). White noise was chosen as a carrier in order to maximize 
masking of high-frequency consonants. The presentation level was 65 dB SPL, 
defined as the level of the noise bursts. Thirty noise waveforms (one per CV utterance) 
were pre-generated and stored as .wav-files. Each utterance was always presented in 
combination with the same noise recording. This was done in order to limit the across-
repetition variability due to the random fluctuations in the Gaussian noise carrier, 
whilst preventing noise-learning effects that could occur if only one noise-waveform 
was used for all utterances (cf.  Zaar and Dau 2015). The speech tokens were mixed 
with the fixed-level noise at four presentation levels: 45, 55, 65, and 75 dB SPL, 
corresponding to broadband SNRs of -20, -10, 0, and 10 dB. The onsets of the CV 
tokens were positioned at five different onset times relative to the noise: 400, 450, 
500, 525, and 550 ms after the initial noise onset, as shown in Fig. 1. To investigate 
whether the speech tokens per se were sufficiently intelligible at the considered speech 
levels, two additional conditions with speech in quiet at presentation levels of 45 and 
65 dB SPL (termed Q65 and Q45) were considered. 
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Fig. 1: Stimulus generation. Example of the CV /ki/ (black waveforms) in 5-
Hz interrupted noise (gray waveforms) for the five considered CV onset 
times, as indicated above the respective waveforms. 

Listeners and procedure 

Twelve young NH native Danish listeners aged 19-26 (average age: 21.7 years) were 
tested. The normal-hearing status was established based on pure-tone thresholds lower 
than 20 dB HL in the 250 – 8000 Hz range. The listeners were seated in a sound-
attenuating listening booth, monaurally presented with the stimuli via headphones, 
and asked to indicate the consonant they heard on a graphical user interface. The 
stimulus presentation could not be repeated and no feedback was provided to the 
listeners. Six different experimental blocks were defined based on the two quiet 
conditions and four SNRs (order: Q65, Q45, SNR = 10, 0, −10, −20 dB). A short 
training run was provided at the beginning of each block. Within each block, the order 
of presentation was randomized. In each condition, each stimulus was presented to 
the listeners five times. 

MODELING 

Model description 

The consonant perception model of Zaar and Dau (2017) was considered to predict 
the perceptual data obtained in the experiment. Figure 2 shows the model, which 
combines the auditory model front end of Dau et al. (1997) with a temporally dynamic 
correlation-based back end. The auditory model consists of (i) a bank of 15 fourth-
order gammatone filters with center frequencies logarithmically spaced between     
315 Hz and 8 kHz, (ii) an envelope extraction stage (realized by half-wave 
rectification and lowpass filtering at 1 kHz), (iii) a chain of five adaptation loops 
(designed to mimic adaptive properties of the auditory periphery), and (iv) a bank of 
four modulation filters, implemented as a 2-Hz lowpass filter in parallel with three 
second-order bandpass filters with a Q-factor of 1 and center frequencies of 4, 8, and 
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16 Hz, respectively. For a given noisy speech signal, the temporal pattern of the noise 
alone (after the preprocessing stages) is subtracted from the corresponding temporal 
pattern of the noisy speech. The resulting model representations of the test signal 
( ) and of a set of templates ( , , …, ) are then aligned in time using a 
dynamic time warping (DTW) algorithm. Finally, the cross-correlation coefficients 
between the time-aligned test-signal representation ( ) and the time-aligned 
template representations ( , , …, ) are calculated and, after adding a constant-
variance internal noise to limit the model’s resolution, converted to response 
percentages.  

 

Fig. 2: Scheme of the considered microscopic speech perception model (from 
Zaar and Dau, 2017). 

Simulation procedure 

The experimental stimuli employed in the noise conditions were fed to the model as 
test signals. The templates were created by mixing the fifteen available CV tokens 
from the test-signal talker with randomly generated interrupted noise, using the same 
speech level and CV onset time as in the test signal. The “correct” template contained 
the same speech token as the test signal, whereas the noise signals differed. Randomly 
generated interrupted noise was considered as “noise alone”. This is different from 
Zaar and Dau (2017), where the noise waveform in the test signals and templates was 
identical to the “noise alone”, and was modified here to simulate potential 
informational contributions of the noise (i.e., noise bursts being mistaken for 
consonant cues). Five templates were generated for each speech token, SNR, and CV 
onset time, each using a different randomly generated interrupted noise waveform. 
The test signals and templates were passed through the model front end; only the 
consonant portions of the resulting internal representations, i.e., the portions of the 
CV tokens between consonant onset and vowel onset, were further considered in the 
back end. Whereas Zaar and Dau (2017) had considered the entire CV tokens, this 
modification was necessary here to prevent the model from being influenced by the 
task-irrelevant vowel portions, in particular when positioned in a noise gap. After 
obtaining the correlation coefficients between the internal representations of each test 
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signal and the corresponding templates, the internal noise was added. Consistent with 
Zaar and Dau (2017), the variance of the internal noise was 0.05 and was held constant 
across the considered conditions. The model response for each iteration was defined 
as the template showing the largest correlation with the test signal.  

RESULTS AND ANALYSIS 

Experimental results 

The measured consonant recognition scores were averaged across consonants and 
talkers. Figure 3 shows the recognition scores in terms of the mean and standard 
deviations across listeners as a function of speech level for the considered conditions. 
It can be observed that consonant recognition was at ceiling for the speech tokens 
presented in quiet (crosses), both for presentation levels of 45 and 65 dB SPL, albeit 
with a larger standard deviation at 45 dB SPL. Thus, it can be concluded that (i) the 
speech tokens were perfectly identifiable in quiet and (ii) that audibility was sufficient 
even at the lowest speech level considered. A two-tailed paired-sample t-test 
confirmed the latter observation, indicating no significant effect of presentation level 
in quiet (p = 0.143). 

The remaining symbols in Fig. 3 depict the recognition scores obtained for the CVs 
mixed with the fixed-level interrupted noise according to the different CV onset times 
(cf. Fig. 1). As expected, consonant recognition generally decreased with decreasing 
speech level. Moreover, a clear effect of CV onset time can be observed. Specifically, 
the earliest CV onset time of 400 ms resulted in the lowest recognition scores (circles) 
and increasing CV onset times generally induced increasing recognition scores. 
However, this trend did not persist for the CV onset time of 550 ms (upward facing 
triangles), which induced lower recognition scores than the CV onset time of 525 ms 
(downward facing triangles). Furthermore, the recognition scores obtained for CV 
onset times of 500 ms and 525 ms were almost identical at the two lowest speech 
levels. Most of the reduction in recognition scores can be attributed to the degree that 
the consonant cues were simultaneously masked: As some consonant cues last up to 
around 100 ms, simultaneous masking was – depending on the CV onset time – 
induced by the third (CV onset times of 400 and 450 ms; circles and squares) or the 
fourth (CV onset times of 525 and 550 ms; upward and downward facing triangles) 
noise burst (cf. Fig. 1). Nonetheless, an effect of forward masking was clearly also 
present, as the recognition scores obtained in the condition with the least amount of 
simultaneous masking (CV onset time of 500 ms; diamonds) were much lower than 
in quiet (crosses) and somewhat lower than in the conditions with more simultaneous 
masking (CV onset time of 525 and 550 ms; downward and upward facing triangles, 
respectively). Two-tailed paired-sample t-test comparing all ten combinations of the 
five CV onset-time conditions were conducted after collapsing the recognition scores 
across speech level. In accordance with the previous observations, the results 
indicated highly significant (p < 0.0001) differences between all conditions except 
between CV onset times of 500 and 550 ms (p = 0.568). The latter two conditions did, 
however, exhibit highly significant (p < 0.0001) differences at a speech level of 65 dB 
SPL. 
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Fig. 3: Average consonant recognition scores as a function of speech level. 
The crosses represent the quiet conditions. The other symbols represent the 
different noise conditions, as indicated by the CV onset times in the legend. 
The noise level was 65 dB SPL. The error bars depict the standard deviation 
across listeners. A slight horizontal jitter was applied for visual clarity. 

Model predictions 

The predicted recognition scores obtained for the experimental stimuli in the noise 
conditions are depicted in the left panel of Fig. 4. Comparing these predictions with 
the data shown in Fig. 3, it can be observed that the model predictions were generally 
similar to the measured data as (i) the recognition scores globally decreased with 
decreasing speech level and (ii) the loss of consonant recognition was proportional to 
the amount of simultaneous masking. However, the model did not predict the extent 
of consonant recognition loss induced by the predominantly forward-masking based 
condition (CV onset time of 500 ms; diamonds), i.e., the effect of forward masking 
was smaller in the model than measured in listeners. Accordingly, the mean average 
error between predicted and measured recognition scores was relatively large for the 
CV onset time of 500 ms (15.8%) and much smaller for the remaining conditions 
(4.8% on average). Nonetheless, the recognition scores shown in Figs. 3 and 4 (left 
panel) were overall strongly correlated (Pearson’s r of 0.94), as can be seen in the 
scatter plot presented in the right panel of Fig. 4. 

So far, only average consonant recognition scores have been considered. However, 
different consonants are typically very differently affected by the masking noise (cf. 
Zaar and Dau, 2015). To investigate whether the model predicted the trends across 
consonants correctly, the measured and predicted consonant-specific recognition 
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scores were averaged across speech levels and their Pearson’s correlation across 
consonants was computed. Consistent with the model predictions reported for 
stationary-noise conditions (Zaar and Dau, 2017), the correlations were large                 
(r > 0.75) and highly significant (p < 0.001) for all considered conditions except for 
the CV onset time of 500 ms, for which, nonetheless, significant correlation was found 
(r = 0.5, p < 0.05). 
 

 

 
Fig. 4: Left panel: Model predictions of average consonant recognition scores 
as a function of speech level, corresponding to Fig. 3. Right panel: Model 
predictions of average consonant recognition scores (shown in the left panel) 
as a function of their measured counterparts (shown in Fig. 3). 

DISCUSSION AND OUTLOOK 

The perceptual effects measured in the present study suggest that consonant 
perception in non-stationary noise strongly depends on the position of the consonant 
cue relative to the noise envelope’s minima and maxima and thus on the amount of 
simultaneous masking. This is consistent with the well-established observation that 
listeners make use of “glimpses” of the target speech in fluctuating interferers (e.g., 
Cooke, 2006). However, since the present study considered CVs as target signals, the 
experimental paradigm revealed more detailed effects, including a clear effect of 
forward masking. Thus, the paradigm may be useful for revealing temporal effects of 
hearing-aid processing, as demonstrated in a related study by Kowalewski et al. 
(2017), which applied the paradigm to investigate the effects of slow- vs. fast-acting 
compression in hearing-impaired listeners. While only consonant recognition has 
been discussed here, an additional analysis of the consonant confusions in the data 
may reveal the interaction between noise and speech tokens in more detail. For 
instance, it is possible that the noise bursts acted not only as a masker but were even 
mistaken for consonant cues, thus adding an informational component. It needs to be 
further investigated, however, whether the detailed effects measured with the 
considered nonsense speech tokens and artificial interrupted noise also play a role in 
more realistic conditions.  
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The model predictions obtained in the present study show that the large predictive 
power of the model, which had previously been demonstrated in conditions of 
stationary noise (Zaar and Dau, 2017) and spectral aspects of hearing-instrument 
processing (Zaar et al., 2017), also extends to conditions of non-stationary noise. Only 
consonant recognition was considered here and it needs to be investigated whether the 
model also can account for consonant confusions in the data. Despite the overall 
accurate predictions, the model was found to be not sensitive enough to the effects of 
forward masking. While the underlying auditory model (Dau et al., 1997) contains an 
adaptation stage and does account for “classical” forward-masking data (for 
narrowband signals), the present speech-based configuration does not seem to fully 
capture the reported forward-masking effects measured with speech signals. Thus, it 
may be useful to adapt the model such that it better accounts for this aspect of the data, 
for instance by modifying the time constants in the adaptation loops or integrating a 
simulation of the cochlear nonlinearities. Overall, the model may be useful as a tool 
for analysing temporal effects of hearing-aid processing, in particular when combined 
with simulations of individual hearing loss. 
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