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A speech intelligibility model is presented based on the computational
auditory signal processing and perception model (CASP; Jepsen et al., 2008).
CASP has previously been shown to successfully predict psychoacoustic
data obtained in normal-hearing (NH) listeners in a wide range of listening
conditions. Moreover, CASP can be parametrized to account for data from
individual hearing-impaired listeners (Jepsen and Dau, 2011). In this study,
the CASP model was investigated as a predictor of speech intelligibility
measured in NH listeners in conditions of additive noise, phase jitter, spectral
subtraction and ideal binary mask processing.

INTRODUCTION

Computational models of the auditory system are a powerful tool to investigate
the ability of humans to hear, process and encode acoustic stimuli. These models
provide information about the mechanisms involved in the perception of acoustic
signals. Moreover, they can provide insights about the effects of hearing loss in the
impaired system. Recently, a model termed correlation-based speech-based Envelope
Power Spectrum Model (SEPSM®™; Relafio-Iborra et al., 2016) was presented,
which employs the auditory processing of the multi-resolution speech-based Envelope
Power Spectrum Model (mr-sEPSM; Jgrgensen et al.,2013) and combines it with the
correlation back end of the Short-Time Objective Intelligibility measure (STOI; Taal
et al., 2011). The sEPSM®"™ was shown to accurately predict NH data for a broad
range of listening conditions, e.g., additive noise, phase jitter and ideal binary mask
processing. The main idea behind the sSEPSM®" is that the correlation between the
envelope representations of the clean speech and the degraded speech is a strong
predictor of intelligibility. However, recent studies have shown that the mr-sEPSM
preprocessing is limited with respect to predicting intelligibility data from hearing-
impaired (HI) listeners (Scheidiger et al., 2017). Specifically, while sensitivity loss
and loss of frequency selectivity can functionally be incorporated, the crucial level-
dependent effects and nonlinearities that are typically strongly affected by hearing loss
cannot be successfully simulated using this framework.

The finding from the Relafio-Iborra et al. (2016) study that the correlation between
the clean and degraded speech in the modulation power domain can be a reliable
predictor of intelligibility was further investigated here using a more realistic auditory
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preprocessing front end. In particular, the front end of the computational auditory
signal processing and perception model (CASP; Jepsen et al., 2008) was considered.
CASP has been shown to successfully predict psychoacoustic data of normal-hearing
(NH) listeners obtained in conditions of, e.g., spectral masking, amplitude-modulation
detection, and forward masking. Furthermore, the model can be adapted to account for
data obtained in individual HI listeners in different behavioural experiments (Jepsen
and Dau, 2011).

In this study, the CASP model was extended to investigate its potential use as a
predictor of speech intelligibility data. In order to adapt CASP to function as a
speech intelligibility prediction model, the speech-based CASP (sCASP) introduces
modifications in the model’s back-end processing and decision metric. The model was
validated as a predictor of intelligibility of Danish sentences measured in NH listeners
in conditions of additive noise, phase jitter, spectral subtraction and ideal binary mask
processing.

THE sCASP MODEL
General structure

The proposed sCASP implementation maintains most of the structure of the original
CASP model, albeit with some minor changes required due to the use of speech
stimuli. The model receives the unprocessed clean speech and the noisy or degraded
speech mixture as inputs (i.e., it has a-priori knowledge of the speech signal). Both
inputs are processed through outer- and middle-ear filtering, a nonlinear auditory
filterbank, envelope extraction, expansion, adaptation loops, a modulation filterbank,
and a second-order envelope extraction for modulation channels above 10 Hz. The
internal representations produced at the output of these stages are analyzed using a
correlation-based back end. Figure 1 shows a diagram of the main model stages.

Modelling of the auditory preprocessing

The first stage is an outer- and middle-ear filtering stage implemented as two finite
impulse response filters as in Lopez-Poveda and Meddis (2001); the output of this
stage can be related to the peak velocity of vibration at the stapes as a function of
frequency. Afterwards, the inputs pass through the dual-resonance nonlinear filterbank
(DRNL; Lopez-Poveda and Meddis, 2001). Within this auditory filterbank, the signals
are processed in two independent parallel paths, where the linear path applies a linear
gain, a cascade of gammatone filters and a lowpass filter, and the nonlinear path
applies a cascade of gammatone filters and a broken-stick nonlinearity followed by
another cascade of gammatone filters and a lowpass filter. The summed signal of the
two paths includes the effects of the nonlinear basilar-membrane processing, which
accounts for level-dependent compression and auditory-filter tuning. This is followed
by an envelope extraction stage, realized by half-wave rectification and second order
low-pass filtering (f. = 1 kHz). The envelopes are then expanded quadratically into
an intensity-like representation. Afterwards, effects of adaptation are modelled using
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Fig. 1: Modelling stages of the speech-based CASP model.

a chain of five feedback loops (Dau et al., 1996). Finally, modulation processing is
included in the model using a bank of frequency-shifted first-order low-pass filters
(i.e, they act as band-pass filters) in parallel with a second-order low-pass filter.
For modulation filters centered below 10 Hz, the real part is considered, and for
modulation filters above 10 Hz, the absolute ouput is considered, in order to account
for decrease of a modulation phase sensitivity (Dau, 1996). For more details, reference
is made to Jepsen et al. (2008) and Jepsen and Dau (2011).

Back end and decision metric

The resulting three-dimensional internal representations (as a function of time, audio
frequency and modulation frequency) are analysed by cross-correlating the time
signals obtained in each combination of modulation and auditory channel. The cross-
correlation is performed in short time windows in a similar way as in the SEPSM“"™
model (Relafio-Iborra et al., 2016), with the window length defined by the inverse of
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the modulation frequency. In order to obtain a unique model output for each pair of
input signals, the correlation values are averaged across time, audio-frequency and
modulation channel. This differs from the calculation in the sSEPSM®°™, since it does
not require the summation of correlation values across time windows (Relafio-Iborra
etal.,2016, Eq. 3) but instead averages the correlation values across time. The sSCASP
back end also differs from the original CASP model, where (i) decisions are based on
the correlation of the normalized difference between the internal representation of the
masker plus a suprathreshold signal (considered as template) and that of the masker
alone (Dau et al., 1996) and (ii) no short-term processing is applied.

METHODS
Test conditions

The model was validated in four different listening conditions: speech in the presence
of additive interferers, noisy speech under reverberation, phase jitter and ideal binary
mask (IBM) processing. For the latter, the Dantale II corpus (Wagener et al., 2003)
was used, and for all other conditions the CLUE corpus was used (Nielsen and Dau,
2009).

Three additive noises were considered for the first experiment: (i) speech-shaped
noise (‘SSN’), (i1) an 8-Hz sinusoidally amplitude-modulated SSN with a modulation
depth of 1 (‘SAM’), and (iii) the speechlike but non-semantic, international speech
test signal (‘ISTS’; Holube et al., 2010). Signal-to-noise ratios (SNRs) ranging from
-27 to 3 dB with a step size of 3 dB were used. Model predictions were compared to
human data obtained under the same conditions by Jgrgensen et al. (2013).

Phase jitter was applied to sentences mixed with SSN at a fixed SNR of 5 dB as
follows:

r(t) = Re{s(1)e’®")} = s(t)cos(O(1))) (Eq. 1)

where s(7) represents the non-processed mixture, r(z) the resulting jittered stimulus
and ©O(r) denotes a random process with a uniform probability distribution between
[0,2a ] with o ranging between 0 and 1 (Elhilali ef al., 2003). The simulations were
compared to the data obtained in Chabot-Leclerc et al. (2014).

For the spectral subtraction experiment, the sentences were mixed with SSN at SNRs
from -9 to 9 dB, in 3 dB steps. Spectral subtraction was applied to each mixture
following:

ST =\ Pe() — kB (f) (Eq.2)

where S is the enhanced magnitude spectrum of the noisy mixture after spectral
subtraction. 1/3; and Py are the averaged power spectra of the noise alone and
the original speech-plus-noise mixture, respectively. Values for the over-subtraction
factor, Kk, of 0, 0.5, 1, 2, 4, and 8 were considered. The simulations were compared
with data collected by Jgrgensen and Dau (2011).
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Finally, IBMs where applied to two SNR mixtures(corresponding to 20% and 50%
understanding) of Dantale II sentences with four different interferers: SSN, car-cabin
noise (‘Car’), noise produced by bottles on a conveyor belt (‘Bottle’), and two people
speaking in a cafeteria (‘Café’). Different IBMs were built as follows:

1 if SNR(¢, f) > LC

Eqg. 3
0 otherwise (Eq. 3)

IBM(z, f) = {

where LC corresponds to the local criterion, which defines the density of the mask.
Eight different values of LC were considered, and discussed here in terms of the
relative criterion defined as RC = LC — RC as in the reference study of Kjems et al.
(2009).

Model fitting

The correlation-based output of the proposed model is monotonically related to the
SNR of the input mixture. In order to convert the model output to intelligibility scores,
a fitting condition is required. The transformation is performed by applying a logistic
function to the model outcome yx:

100
P(x) = [ (Eq. 4)
where a and b are free parameters adjusted to map the model output to intelligibility
scores in the fitting condition. The model was calibrated twice in the present study,
once per speech material, using SSN at different SNRs. Thus, the mapping accounts
for the intelligibility of the speech material but implies no a-priori knowledge about
the degradations tested, other than the degradation induced by the SSN.

RESULTS AND DISCUSSION

Figure 2 shows the human data, in open squares, and the corresponding model
predictions, in gray circles, for the four conditions under consideration. The accuracy
of the model predictions was measured in terms of their Pearson’s correlation and
mean average error (MAE) with the human data.

The model can account for the changes in intelligibility reported by the listeners for
speech in the presence of different additive noises, as seen in panel (a), with p = 0.99
and MAE = 1.5 dB. Regarding the non-linear conditions, i.e., spectral subtraction,
phase jitter and IBM (panels b, ¢ and d), the model can account fairly well for the data
with p = 0.78 and MAE = 1.2 dB, p = 0.96 and MAE = 8.5% and p = 0.78 and
MAE = 13%, respectively.
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Fig. 2: Panels (a) - (d) show human data (open squares) and model predictions
(gray circles) for conditions of speech in the presence of additive noise (a),
noisy speech with spectral substraction processing (b), noisy speech distorted
with phase jitter (c) and IBM-processed noisy speech (d). Human data from
Jgrgensen et al. (2013), Jgrgensen and Dau (2011), Chabot-Leclerc et al.
(2014) and Kjems et al. (2009), respectively.
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However, in the phase jitter condition (panel c), it can be observed that the model
exhibits some flooring effects, such that it does not predict intelligibility scores below
15% and underestimates the recovery of intelligibility reported by listeners for o¢ =
0.75. This might be an indication of the need for an across-frequency analysis as
suggested by Chabot-Leclerc et al. (2014). Furthermore, although not shown here, the
sCASP model does not account for effects of reverberation on speech intelligibility (as
also reported for the SEPSM®°™).

Overall, these results are very similar to those reported in Relafio-Iborra et al. (2016)
(see Table 1), despite the changes both in the front-end and the back-end processing. It
thus appears that the pre-processing of CASP, which includes an adaptation stage that
emphasizes the higher-frequency envelope content, does not require the accumulation
process used in the SEPSM™ back end in order to replicate its performance (i.e.,
a linear average of the correlation values across time windows suffices). Still, the
main finding of Relafio-Iborra ef al. (2016) holds, namely that the correlation in the
modulation domain can account for speech intelligibility.

sCASP sEPSM "

p MAE | p MAE
Additive Interferers 0.99 | 1.5dB | 0.97 | 1.85dB
Spectral Subtraction 0.78 | 1.2dB | 0.82 | 0.6dB
Phase Jitter 096 | 85% | 097 | 19.0%
Ideal Binary Mask Processing | 0.78 | 13% | 0.79 | 12.1 %

Table 1: Comparison of the accuracy of the predictions for the proposed
sCASP model and the referenced SEPSM®" (Relano-Iborra et al., 2016). p
denotes the Pearson’s correlation between human data and model predictions
and MAE stands for mean average error.

CONCLUSION
The sCASP model shows promising results in terms of predicting NH intelligibility

in a wide range of listening conditions. Combined with the original CASP model’s
ability to account for individual HI psychoacoustic data, this provides a strong basis
for a framework investigating consequences of hearing loss on speech intelligibility.
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