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A recent study suggested that the most important factor for obtaining
high speech intelligibility in noise with cochlear implant recipients is to
preserve the low-frequency amplitude modulations of speech across time
and frequency by, for example, minimizing the amount of noise in speech
gaps. In contrast, other studies have argued that the transients provide the
most information. Thus, the present study investigates the relative impact
of these two factors in the framework of noise reduction by systematically
correcting noise-estimation errors within speech segments, speech gaps, and
the transitions between them. Speech intelligibility in noise was measured
using a cochlear implant simulation tested on normal-hearing listeners. The
results suggest that minimizing noise in the speech gaps can substantially
improve intelligibility, especially in modulated noise. However, significantly
larger improvements were obtained when both the noise in the gaps was
minimized and the speech transients were preserved. These results imply
that the correct identification of the boundaries between speech segments and
speech gaps is the most important factor in maintaining high intelligibility
in cochlear implants. Knowing the boundaries will make it possible for
algorithms to both minimize the noise in the gaps and enhance the low-
frequency amplitude modulations.

INTRODUCTION

Hochberg et al. (1992) reported that cochlear implant (CI) recipients typically had
thresholds for speech reception in noise that were 10 to 25 dB poorer than normal-
hearing listeners. Since then, there has been extensive research in the development of
noise reduction algorithms and sound coding strategies in order to obtain an increased
robustness to noise. Within this effort, speech intelligibility improvements have been
demonstrated by applying both single-microphone noise reduction (e.g., Mauger et
al., 2012) and multi-microphone directional noise reduction (e.g., Hersbach et al.,
2013). In contrast, although many sound coding strategies have been proposed
over the last few decades, none have been able to consistently produce a measured
improvement in speech intelligibility in noisy environments over well-established
strategies like continuous interleaved sampling (CIS) and the Advanced Combination
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Encoder (ACETM, Cochlear Ltd., New South Wales, Australia). One potential reason
for this lack of success is that relatively little is known about how different kinds of
errors in CI stimulation specifically influence speech intelligibility outcomes.

In an effort to improve this understanding, Qazi et al. (2013) investigated the effects
of noise on electrical stimulation sequences and speech intelligibility in CI recipients.
They suggested that noise affects stimulation sequences in three primary ways: (1)
noise-related stimulation can fill the gaps between speech segments, (2) stimulation
levels during speech segments can become distorted, and (3) channels which are
dominated by noise can be selected for stimulation instead of channels which are
dominated by speech. In order to measure the effect of each of these, Qazi et
al. (2013) generated several artificial stimulation sequences, each of which contained
different combinations of these errors. They presented these artificial stimulation
sequences to CI recipients, as well as normal-hearing listeners with a vocoder, and
measured speech intelligibility. Their results indicated that the most important factor
for maintaining good speech intelligibility was the preservation of the low-frequency
(i.e., what they called “ON/OFF”) amplitude modulations of the clean speech by, for
example, minimizing the noise presented in speech gaps.

Koning and Wouters (2012), however, argued that it is the information encoded in
the transient parts of the speech signal that contributes most to speech intelligibility.
Accordingly, they demonstrated that enhancing speech onset cues alone improves
speech intelligibility in CI recipients (Koning and Wouters, 2016). By comparison,
Qazi et al. (2013) also inherently enhanced onset and offset cues in the conditions
where they removed noise in the gaps between speech, because they always identified
these segments via ideal onset and offset detection. Therefore, by removing noise
in the speech gaps in their experiment, they simultaneously enhanced the saliency of
the onsets and offsets. Qazi et al. (2013) did not, however, investigate the effect of
reducing noise in the gaps when the boundaries between the speech segments and
speech gaps were not perfectly aligned. Therefore, it is unclear how advantageous the
minimization of the noise in speech gaps is when it does not co-occur with accurate
onset and offset cues. Furthermore, the importance of the separation of these two
factors becomes clear when considering that realistic algorithms will not be able to
perfectly identify the boundaries between speech segments and speech gaps.

The main motivation of the present study was to systematically quantify the relative
impact of realistic noise-estimation errors occurring within speech segments, speech
gaps, and speech transients. Specifically, this study investigated these distortions
using a basic CI vocoder simulation tested with normal-hearing listeners, which
provides insight into the impact of the spectro-temporal degradation in isolation from
an impaired auditory system.

METHODS

A CI with an N-of-M strategy such as ACE encodes sound by first separating the input
signal into M channels and subsequently stimulating a subset of at most N channels
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at each frame l. In this study, speech was divided into 128-sample overlapping
frames, and then a Hann window and the short-time discrete Fourier Transform
(STFT) was applied with K = 128 points to obtain the time-frequency representation
of speech, X(k, l). The STFT magnitudes were then combined into M = 22 channels
using non-overlapping rectangular weights with spacing that matches Cochlear Ltd.’s
(New South Wales, Australia) sound processor in order to obtain the time-frequency
representation X(m, l), where m represents the channel index and l represents the
frame index. A new frame was calculated every 1 ms.

In the Qazi et al. (2013) study, sentences were divided temporally into speech
segments and speech gaps. Artificial sequences were then synthesized by copying
segments from the clean speech sequence and noisy speech sequence. In the
present study, sentences were instead divided into three temporal regions (i.e., speech
segments, speech gaps, and speech transitions). This protocol allows for the separation
of the reduction of noise in the speech gaps from the encoding of the transitions. In
order to do this segmentation, broadband channel activity, A(l) was defined for each
frame as the number of channels containing speech above a threshold:

A(l) =
M

∑
m=1

Tλ (X(m, l)) , (Eq. 1)

where the function Tλ (·) performs element-wise thresholding and returns a value of
one for elements that are above 25 dB sound pressure level (i.e., the default threshold
level in ACE). As in the Qazi et al. (2013) study, speech segment onsets were then
identified as frames in which A(l) = 0 and A(l + 1) > 0, and speech segment offsets
were defined as frames in which A(l) > 0 and A(l + 1) = 0. Speech segments with
A(l) ≤ 1 for the duration of the segment were dropped, and speech segments shorter
in duration than 20 ms that were close in time to another speech segment were merged
together. The merging prevented rapid switches between speech and non-speech
labels. Subsequently, a transition region was defined at each onset and offset as the 10
ms before and the 10 ms after, such that a region of 20 ms in duration was created at
the start and end of each speech segment. Finally, the remaining frames were labeled
as speech gaps. An example stimulation sequence for a clean sentence is shown in
Fig. 1(a), with the temporal regions indicated by the underlying shading. The 20-
ms duration for the transition region was heuristically chosen in order to ensure the
transition regions were long enough to be perceptible, but short enough to maintain a
segmentation that was still comparable to the segmentation in Qazi et al. (2013).

Whereas Qazi et al. (2013) primarily manipulated channel selection and current levels
within each temporal region in order to investigate the impact of noise-induced errors
in sound coding strategies, the present study manipulated the gains that are applied in
a preceding noise reduction stage in order to investigate the impact of noise-induced
errors in noise reduction algorithms. Therefore, instead of synthesizing stimulation
patterns from the clean and noisy speech, artificial gain matrices were synthesized
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Fig. 1: Electrodograms showing (a) stimulation levels above threshold for the
Danish sentence, Stuen skal nok blive hyggelig and (b-j) unthresholded levels
for the same sentence mixed with speech-weighted noise and then de-noised
using the indicated gain matrix. Speech segments, transitions, and gaps are
identified in (a) by the white, light gray, and dark gray shading, respectively.

from either the a priori local signal-to-noise ratios (SNRs) or from estimated SNRs
using a CI-optimized noise reduction algorithm (Mauger et al., 2012). An underlying
assumption in this study then is that a maxima selection strategy, such as ACE, will
stimulate the correct set of channels if it chooses channels from a representation that
has been sufficiently de-noised.

The following general signal model was thereby considered: Y (k, l) = X(k, l) +
D(k, l), with X(k, l) representing the clean speech, D(k, l) representing the noise
signal, and Y (k, l) representing the noisy speech signal. An estimate of the noise
spectrum D̂(k, l) was computed from the noisy signal Y (k, l) using the improved
minimum controlled recursive algorithm (Cohen, 2003). D̂(m, l) was then computed
using the same rectangular weights as were used for computing X(m, l) from X(k, l),
and a smoothed SNR estimate ξ̂ (m, l) was obtained using a CI-optimized smoothing

technique (Mauger et al., 2012). From ξ̂ (m, l), gains Ĝ(m, l) were obtained using the
CI-optimized gain function (Mauger et al., 2012),

Ĝ(m, l) =

(
ξ̂ (m, l)

ξ̂ (m, l)+2.92

)1.2

. (Eq. 2)

Additionally, the ideal gains G(m, l) were computed using the a priori instantaneous
signal-to-noise ratio ξ (m, l).

Artificial gain matrices were synthesized by concatenating segments from either
Ĝ(m, l) or G(m, l) for each of the three temporal regions. For example, to understand
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the impact of errors specifically in the speech gaps, gains from G(m, l) were applied
to the noisy signal Y (m, l) in all of the speech gaps, and gains from Ĝ(m, l) were
applied in all of the speech transitions and speech segments. This condition was named
GgĜtĜs to signify that the estimated gains were corrected in the speech gaps, but not in

the transitions and the speech segments. Accordingly, the condition ĜgGtĜs signifies
that the estimated gains were corrected in the speech transitions, and it follows that
the condition GgGtGs signifies that the estimated gains were corrected in all of the
temporal regions, which is equivalent to ideal Wiener processing with a CI-optimized
gain function.

The final stimulation sequence was computed by selecting the N = 8 channels with
the largest remaining energy. An acoustic signal was then constructed from the
stimulation sequence using a 22-channel noise vocoder. Figure 1(b) shows the
sequences for a noisy version of the sentence in Fig. 1(a), and Figs. 1(b-j) show
the sequences after de-noising with each type of gain matrix. A visual comparison
between Figs. 1(c) and 1(j) highlights the extent of the estimation errors in ĜgĜtĜs.
Subsequently, the remaining figures in the left column contain the stimulation patterns
for the conditions where just one of the temporal regions of the gain matrix have been
corrected. Lastly, the remaining plots in the right column each show the stimulation
patterns for the conditions where two of the temporal regions have been corrected.

Speech intelligibility was evaluated in six participants by obtaining speech reception
thresholds (SRTs) of sentences in noise via the Danish hearing in noise test (HINT)
(Nielsen and Dau, 2011). Through an adaptive procedure, HINT determines the
SNR at which the participants were able to understand 50% of the sentence material.
Testing was carried out in a double-walled booth, using equalized Sennheiser HD-650
circumaural headphones. Participants were at least 18 years of age, had audiometric
thresholds of less than or equal to 20 dB HL in both ears (125 Hz to 8 kHz), and
were native Danish speakers. All participants provided informed consent, and the
experiment was approved by the Science-Ethics Committee for the Capital Region of
Denmark (reference H-16036391). The participants were paid for their participation.

At the start of the session, participants first heard vocoded sentences in quiet and then
in noise to become familiar with the task. Testing subsequently commenced with
either stationary speech-weighted noise (Nielsen and Dau, 2011) or the International
Speech Test Signal (Holube et al., 2010) (i.e., a modulated noise that is speech-like but
unintelligible), and then testing proceeded with the other. The presentation order of the
noise types was counterbalanced across participants. There were eight noise reduction
conditions, and together with the reference, noisy condition (i.e., unity gains), there
were nine test conditions for each noise type. Two SRTs were collected per condition,
and the mean of the two was used for analysis. For two of the participants, only one
SRT was collected for a small subset of the test conditions, and therefore, these three
data points did not include test-retest averaging. None of these points were outliers.
Since the Danish HINT contains only ten lists, participants heard the first nine lists
multiple times, in a random order each time.
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Fig. 2: Speech reception threshold (SRT) improvements relative to the
reference noisy condition. Box plots show the 25th, 50th, and 75th percentiles,
together with whiskers that extend to extreme data points not considered
outliers. Outliers are marked with an asterisk. Letters correspond to
individual participants.

RESULTS

Figure 2 shows the improvement in SRT for each individual relative to their average
SRT in the reference noisy condition. Because normal-hearing listeners generally
do not benefit from single-microphone noise reduction algorithms (Hu and Loizou,
2007), it is not surprising that the CI-optimized noise reduction algorithm (i.e.,
ĜgĜtĜs) did not provide an SRT improvement, on average. Similarly, it is not
surprising that the average SRT improvement was around 25 dB when a priori
information about the local SNRs was used (i.e., GgGtGs), as this was the maximum
possible benefit given the constraints of the testing software.

Focusing first on the impact of errors in the speech gaps (i.e., GgĜtĜs versus ĜgĜtĜs),
SRTs tended to improve in the stationary noise, and substantially improved in the
modulated noise —though to varying degrees across participants— when the errors
in the gaps were removed. This result suggests that minimizing noise-dominated
stimulation in the speech gaps is an important factor for improving intelligibility,
which is in line with the conclusions in Qazi et al. (2013).

However, in comparison to correcting the errors in the speech gaps, correcting errors
in the speech segments (i.e., ĜgĜtGs) yielded, on average, a smaller SRT benefit,
especially with regard to the modulated noise type. In a similar manner, correcting
gain errors in the transition regions (i.e., ĜgGtĜs) yielded a relatively small SRT
benefit, particularly in the stationary noise. This result was unexpected, however,
given that the previous body of literature suggests that increased gain in transition
regions (e.g., Vandali, 2001), or specifically at the onsets (e.g., Koning and Wouters,
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2016), significantly improves speech intelligibility for CI recipients in both stationary
noise and in the presence of a competing talker. Thus, it is possible that CI listeners
rely more on these cues than normal-hearing listeners with a vocoder simulation.
Alternatively, it may be that the detrimental effect of the sudden changes in gains
in these stimuli were larger than the benefit of encoding the transitions correctly.

Despite the relatively small impact when only correcting gain errors in the transitions
alone, the combination of correcting errors in the transitions and correcting errors in
the gaps resulted in substantial improvements in SRTs. Furthermore, the benefit from
correcting gain errors in both of these regions is much larger than the sum of the
benefit from each in isolation. This result suggests that there is a strong interaction
between gain errors in speech gaps and gain errors in the transitions, which implies
that the potential benefit of minimizing stimulation from noise-dominated channels in
speech gaps largely depends on how accurately the boundaries between the gaps and
segments of speech are encoded.

CONCLUSION

Qazi et al. (2013) suggested that the most important factor for attaining high speech
intelligibility in noise with CI listeners is to preserve the low-frequency amplitude
modulations of speech across time and frequency in the stimulation patterns. In their
study, both CI recipients and normal-hearing listeners tested with a vocoder simulation
achieved the largest improvement in intelligibility when there was no stimulation in
the gaps between speech segments. In a realistic algorithm, however, the identification
of these regions will be imperfect, and the results from the current study suggest
that the benefit of attenuating noise-dominated stimulation presented in speech gaps
is largely diminished when the transitions between the speech and speech gaps are
distorted. Although some listeners in the current study obtained a very large benefit
in modulated noise with the minimization of gain errors in the gaps, even when
errors in the transitions remained present, their intelligibility improvement is likely
attributed to the fact that they could listen in the dips for salient onset cues. Since
CI recipients are typically less able to listen in the dips (Nelson et al., 2003), this
benefit is likely to be less pronounced in CI listeners. Therefore, removing stimulation
in the speech gaps may not itself be such a key component to improving speech
intelligibility in noise in CI listeners. Instead, a more effective goal may be to identify
the boundaries between the speech and gaps, so that, while minimizing the stimulation
of noise-dominated channels in the gaps, it will also be possible to deliver salient cues
related to the transients. These two components together seem to contribute the most
to understanding speech in noise, at least with normal-hearing listeners tested with
speech degraded by a vocoder simulation.
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