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Nowadays, the pure-tone audiogram is the main tool used to characterize
hearing loss and to fit hearing aids. However, the perceptual consequences
of hearing loss are typically not only associated with a loss of sensitivity, but
also with a clarity loss that is not captured by the audiogram. A detailed
characterization of hearing loss has to be simplified to efficiently explore the
specific compensation needs of the individual listener. We hypothesized that
any listener’s hearing can be characterized along two dimensions of distortion:
type I and type II. While type I can be linked to factors affecting audibility,
type II reflects non-audibility-related distortions. To test our hypothesis,
the individual performance data from two previous studies were re-analyzed
using an archetypal analysis. Unsupervised learning was used to identify
extreme patterns in the data which form the basis for different auditory
profiles. Next, a decision tree was determined to classify the listeners into
one of the profiles. The new analysis provides evidence for the existence
of four profiles in the data. The most significant predictors for profile
identification were related to binaural processing, auditory non-linearity and
speech-in-noise perception. The current approach is promising for analyzing
other existing data sets in order to select the most relevant tests for auditory
profiling.

INTRODUCTION

Supra-threshold distortions can be defined as the abnormal perception of stimuli
when these are audible, i.e., above the audiometric threshold. While amplification
can effectively compensate for the loss of sensitivity, supra-threshold distortions
may require more advanced signal processing to improve hearing, particularly, when
the hearing-aid user holds a conversation in noisy environments (Kollmeier and
Kiessling, 2016; Plomp, 1978). Several studies have attempted to shed light on the
underlying mechanisms responsible for these distortions by means of correlations of
psychoacoustic tests with speech in noise performance (Glasberg and Moore, 1989;
Strelcyk and Dau, 2009; Johannesen et al., 2016). While these tests could provide a
better characterization of the hearing deficits, they are infeasible in a clinical set up.
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A recent study (Thorup et al., 2016) proposed a test battery of new outcome measures
used in a clinical set up for hearing aid candidates. Furthermore, Johannesen et al.
(2016) investigated the influence of cochlear mechanical dysfunction, as well as the
effects of temporal processing deficits and age on speech intelligibility in hearing-
impaired (HI) listeners while wearing hearing aids (HA). The goal of the present
study was to investigate how the characterization of hearing loss can be simplified
by means of auditory profiling. For this purpose, a new analysis of these two
datasets using archetypal analysis was performed. This analysis represents a useful
tool for identifying patterns in the data and it has been proposed for prototyping
and benchmarking (Ragozini et al., 2017). The advantage of the proposed method
is that the analysis involves the performance of the patient in different tests rather
than correlations or regression analysis (Glasberg and Moore, 1989; Johannesen et
al., 2016).

Hearing deficits and auditory profiles

The characterization of hearing deficits can be complex and it needs to be simplified
to efficiently explore the specific compensation strategies for the individual. Several
authors have suggested classifications of the listeners to reduce this complexity. Three
of such approaches served as inspiration for the hypothesis of the present study:

1. I: Plomp (1978) suggested that the hearing deficits in relation to speech
intelligibility can be divided into two components: an attenuation (A) and
distortion (D) component.

2. II: Lopez-Poveda (2014) reviewed the mechanisms that produce hearing loss
and their perceptual consequences for speech. In a bi-dimensional space, the
hearing loss can be understood as the sum of an outer-hair-cell (OHC) loss and
an inner-hair-cell (IHC) loss.

3. III: Dubno et al. (2013) suggested four auditory phenotypes for explaining age-
related hearing loss based on animal studies. Although this can be informative
revealing the origin of the hearing loss, pure-tone audiometry has remained the
main contributor in this classification and no information about speech or other
tasks were considered.

Here, we hypothesize that any listener’s hearing can be characterized along two
dimensions: distortion type I and distortion type II (Fig. 1). While distortion type I can
cause a loss of audibility, distortion type II is considered to reflect a non-audibility-
related distortion, referred to as a clarity loss. In this space, four profiles may be
identified: a sensitivity loss (Profile A), a sensitivity loss with associated distortions
(Profile B), a sensitivity loss with a severe clarity loss (Profile C) and a mild-moderate
clarity loss (Profile D). Figure 1 shows the four profiles in the two-dimensional space,
where normal-hearing (NH) listeners are placed at the bottom-left corner since they
would not exhibit any type of distortion. It is hypothesized that while the distortions
of type I (in the vertical dimension) are due to a loss of frequency selectivity and a
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Fig. 1: Sketch of the hypothesis. Hearing deficits can happen due to two
types of distortions that are independent. Distortion type I: distortions with
consequent loss of sensitivity. Distortion type II: non-audibility related
distortions. Profile A: sensitivity loss. Profile B: sensitivity loss and
distortion. Profile D: moderate clarity loss and Profile C: severe clarity loss.

loss of cochlear compression, the distortions of type II (in the horizontal dimension)
are related to inaccuracies in terms of temporal coding, in line with the conclusions
from other studies (Glasberg and Moore, 1989; Strelcyk and Dau, 2009).

The aim of the present study was to investigate whether listeners can be grouped in
the four different profiles by identifying trends in the results from the behavioral tests
using a data-driven approach. The analysis is expected to help identify the underlying
mechanisms and perceptual consequences of the hearing deficits that characterize
an individual auditory profile. Moreover, it is of interest to reduce the test battery
using only the most relevant tests for classifying the subjects in the proposed auditory
profiles.

METHOD

The method used in the analysis is depicted in Fig. 2. The data-driven approach is
based on two stages. First, unsupervised learning was used to identify the trends in
the data that can be used to categorize the subjects in different profiles. The second
stage consisted of supervised learning. Once the subjects were segmented by profiles,
the data were analyzed again to find the best classification structure that can predict
the identified profile.

Unsupervised learning

Unsupervised learning aims to identify patterns occurring in the data, where the output
is unknown and the statistical properties of the whole dataset are explored. In contrast
to linear regression, unsupervised learning does not aim to predict a specific output,
for example, speech intelligibility. In the present approach, identified auditory profiles
were eventually inferred using different unsupervised learning techniques.
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Fig. 2: Sketch of the method. Upper panel shows the supervised
learning techniques applied to the whole dataset.The bottom panel shows the
supervised learning, which uses the original data as the input and the identified
profiles from the archetypal analysis as the output.

I. Dimensionality reduction: According to our hypothesis, two dimensions,
corresponding to the two types of distortions, should be sufficient for auditory
profiling. Therefore, the subset of variables that were strongly correlated to the
first principal component (PCA1) and the second principal component (PCA2)
and can explain most of the variance were chosen for the next step. The optimal
number of variables in each of the two principal components was chosen using
a leave-one-out cross-validation in an iterative principal component analysis
(PCA).

II. Archetypal analysis: This technique combines characteristics of matrix factor-
ization and cluster analysis. The aim of the analysis was to identify extreme
patterns in the data (archetypes). This has the advantage that the subjects are no
longer defined by the quantified performance in each of the tests, but by their
similarity to the extreme exemplars contained in the data, i.e., the archetypes.

III. Profile identification: Based on the archetypal analysis, the subjects were placed
in a simplex plot (square visualization). Here, the archetypes are located at
each corner and the subjects are placed in the two-dimensional space according
to the distance to each archetype. In the present analysis, it was assumed
that the subjects placed close to an archetype would belong to that cluster.
Consequently, each subject was labelled with the letter of an auditory profile
according to the nearest archetype.
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Supervised learning

Once the profiles have been identified, supervised learning can be performed. Now,
the joint probability density of the dataset and the output (the identified profiles) can
be used to select the tests that are most relevant for the classification of the subjects in
the auditory profiles.

IV. Classification: Decision trees are able to predict the class that corresponds to
a given observation. Here, each relevant test is used in the nodes forming a
logical expression and dividing the observations accordingly (Fig. 2 IV). A
classification tree needs to be trained with a subset of the data and a known
output. In the present study, the identified auditory profiles (III) were used as
the response variable and a 5-fold cross-validation was used for training the
classifier.

RESULTS

Thorup (2016) Johannesen (2016)

Dimension Variable Test Variable Test

Di
st

or
tio

n 
I

HLLF Hearing loss at low frequencies HLHF Hearing loss at high frequencies

HLHF Hearing loss at high frequencies BMCompHF
Basilar membrane compession at high 
frequencies

SRTQ Speech reception threshold (SRT) in quiet OHClossHF Outer hair cell loss estimated at high frequencies

SRTN
SRT in noise using hearing in noise test 
(HINT) IHClossHF Inner hair cell loss estimated at high frequencies

SRTISTS
SRT in noise using international speech 
test signal

Di
st

or
tio

n 
II

Bpdio Binaural Pitch (BP) diotic control 
condition HLLF Hearing loss at low frequencies

Bpdicho BP dichotic condition FMDT Frequency modulation discrimination threshold

Bptot BP diotic + dichotic OHClossLF Outer hair cell loss estimated at low frequencies

MR Masking release (SRTN-SRTISTS) IHClossLF Inner hair cell loss estimated at low frequencies

ACALOSSlope3k Slope of growth of loudness at 3 kHz 

Table 1: Result from the dimensionality reduction of the two datasets.
Variables strongly correlated to PCA1 (distortion type I) and PCA2 (distortion
type II).

The whole dataset was reduced to the variables that were strongly correlated to
Dimension I (PCA1) or Dimension II (PCA2), as summarized in Table 1. In Thorup
et al.’s study, the dimensionality reduction revealed that the binaural tests were
orthogonal to most of the tests related to audibility. Principal component analysis
could explain 83.82% of the variance with two components. In Johannesen et
al.’s study, Dimension II seemed to be dominated by low-frequency processing and
Dimension I by high-frequency processing. PCA could explain 67% of the variance
with the chosen variables.
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The archetypal analysis was used to identify four archetypes using the variables from
Table 1. As shown in Fig. 3, in both studies, Profile A (archetype A) exhibits the
best performance in both dimensions and Profile C the worst. Profile B shows poor
performance only in Dimension I while Profile D shows poor performance only in
Dimension II. Based on these archetypes, each listener was considered to belong to
the auditory profile of the closest archetype. Figure 3 B1 (Thorup et al.’s dataset)
illustrates how the listeners are divided in clusters in the two-dimensional study.
However, Figure 3 B2 (Johannesen et al.’s dataset) shows how the listeners are spread
out among the profiles.

A1) B1)

A2)

C1)

B2) C2)

Fig. 3: Archetypes: Extreme exemplars of the different patterns found in the
data. A1) Normalized performance of each of the 4 archetypes from Thorup
et al.’s study. B1) Simplex representation of the listeners of Thorup et al.’s
study. C1) Decision tree result of the supervised learning. A2, B2, and C2)
are the same as A1, B1, and C1) but for Johannesen et al.’s study.

Decision trees were obtained by using the raw data as an input and the auditory profiles
as the output. In Thorup et al.’s study, the classification tree based on SRTISTS

and binaural pitch showed a very high precision (58 out of 59 true positives). In
Johannesen et al.’s study, the classification was based not only on the audibility loss
at high and low frequencies but also the estimate of OHC loss at low frequencies. The
precision of this classifier was lower (66%).

DISCUSSION

The hypothesis in terms of the proposed four auditory profiles was evaluated in a data-
driven approach. It was assumed that one dimension (distortion type I) may be related
to a reduced frequency selectivity, while the second dimension would be related to
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temporal processing reflecting to a non-audibility related distortions (distortion type
II). First, the analysis of a dataset with a population of near-normal-hearing and
hearing-impaired listeners revealed that binaural processing tests were highly sensitive
for the classification of the listeners and a main contributor in the distortion type II
dimension. Second, the analysis of a dataset with only hearing-impaired listeners
showed that the distortion type I was related to high-frequency processing and the
distortion type II was related to low-frequency processing. The two analyses cannot
directly be compared because the tests and the listeners differed across studies. It
should be noted that Johannesen et al.’s study did not consider any test concerning
binaural processing. Therefore, the difference in the explained variance across the
two studies is mostly caused by the lack of such information in their study.

Pure-tone audiometric thresholds are used to quantify the hearing loss but they can,
in fact, be the consequence of different factors. As shown in Fig. 3 A2, dimension
I does not only contain the high-frequency hearing loss but also estimated cochlear
compression. Dimension II contains the low-frequency hearing loss and the outcome
of the frequency modulation detection task which has been suggested to reflect
temporal processing abilities. Therefore, it is important to bear in mind that there
are interactions between the audibility and the two types of distortions proposed here.
One approach to disentangle this interaction may be made based on the effects related
to the OHC vs IHC processing.

If a substantial population of IHC or neural fibers is affected, the thresholds can be
elevated (Lobarinas et al., 2013), leading to temporal distortions as well as degraded
binaural processing (Profiles D and C). However, the temporal acuity can also be
compromised while audiometric thresholds are normal or close-to-normal (Zeng et
al., 1999) (Profile D). OHC loss is typically associated with basilar membrane (BM)
compression loss (reduced frequency selectivity) as well as elevated audiometric
thresholds (Ahroon et al., 1993). Although reduced compression leads to a threshold
elevation (Profile B), listeners with elevated thresholds can still have a nearly-normal
BM compression (Profile A).

It is likely that the two types of deficits (degraded frequency selectivity vs degraded
temporal processing) affect speech perception in different ways. The signal processing
strategies that can be applied to compensate for each type of impairment can be
assumed to be different. Therefore, both loss of audibility and outcome measures
reflecting spectral and temporal distortions should be part of a clinical test battery for
characterizing hearing deficits.

Conclusion

The new analysis provides consistent evidence of the existence of two sources of
distortion and different ‘auditory profiles’ in the data. While distortion type I was
more related to audibility loss at high frequencies, the origin of distortion type II was
connected to reduced binaural processing abilities and low-frequency hearing loss.
The most informative predictors for the profile identification beyond the audiogram
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were related to temporal processing, binaural processing, compressive peripheral
nonlinearity, and speech-in-noise perception. The current approach can be used to
analyze other existing data and might help define a test battery to achieve an efficient
auditory profiling.
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