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Speech processing using adaptive auditory receptive fields  
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The auditory system exhibits a remarkable ability to adapt to its listening 
environment, driven both by sensory-based cues and goal-directed processes. 
Here, we focus on the role of attentional feedback in facilitating processing 
of speech sounds in presence of nonstationary noises. We examine a 
theoretical formulation for retuning of cortical-like receptive fields to enable 
robust detection of speech sounds in presence of interference. The framework 
employs modulation-tuned filters aimed at emulating tuning characteristics of 
neurons at the level of auditory cortex. This bank of filters is then modulated 
based on goal-directed feedback to enhance separability between the feature 
representation of speech and nonspeech sounds. We hypothesize that this 
retuning procedure results in an emphasis of unique speech and nonspeech 
modulations in a high-dimensional space. We discuss the implications of this 
retuning on the fidelity of encoding speech sounds in presence of seen and 
novel noise conditions, and discuss implications of such plasticity in 
facilitating listening in challenging acoustic environments, hence opening the 
door to adaptive and intelligent audio technology that can emulate the 
biological system. 

INTRODUCTION  

When engaged in a conversation in a noisy cafeteria, our brain relies on cognitive 
processes particularly attention to help navigate the challenging acoustic stimulus 
impinging on its ears and detect sounds of interest. Attention acts as information 
bottleneck that sifts through acoustic cues and helps boost the signal-to-noise 
representation of targets relative to interferers in order to ultimately facilitate 
processing of these sounds of interest. An increasing body of work suggests that 
attending to a target sound induces profound but rapid adaptation effects in brain 
responses. Magnetoencephalography (MEG) recordings in listeners attending to a 
target speech in presence of competing talkers showed selective enhancement of 
neural phase-locking to the attended stream resulting in improved and robust 
reconstruction of the attended speech regardless of the signal-to-noise relative to the 
interferer (Akram et al., 2016; Ding and Simon, 2012; Puvvada and Simon, 2017). 
The readout of the attended speech appears to also be in synchrony with enhancement 
in brain oscillations (particularly alpha rhythm), which selectively modulates the 
neural representation of the attended stimulus resulting in improved segregation 



 
 
 
Ashwin Bellur and Mounya Elhilali 
 

 

(Wostmann et al., 2016). Similar results have been reported using electroencephalo-
graphy (EEG) where selective attention in noisy environments (e.g., competing 
talkers, reverberation) also improve neural encoding of the speech envelope of the 
attended stream (Fuglsang et al., 2017; O’Sullivan et al., 2014).  A refined look at 
neural activity at the single neuron level has also corroborated these findings using 
high-density intracranial electrode arrays in human participants (Mesgarani and 
Chang, 2012). Results show that neural responses in non-primary auditory cortex 
(posterior superior and middle temporal gyrus) are driven almost solely by the 
attended speaker. 

A natural question that arises is how does the auditory system balance a stable sensory 
encoding and perceptual decoding in presence of such profound adaptation effects 
(Seriès et al., 2009). Given the distributed neural circuitry underlying this attention-
induced modulation, one interpretation of these effects is at the perceptual stage 
whereby adaptation of perceptual estimates implies refining the interpretation of 
sensory encoding for different tasks/environments. This account is often favored in 
engineering solutions which employ similar forms of adaptation (e.g., domain 
adaptation, model adaptation) in machine learning to adapt to specific targets or 
classes or generalize models across conditions of the data (Ben-David et al., 2010; 
Gauvain and Lee, 1994; Leggetter and Woodland, 1995; Siohan et al., 2001). 

An alternative interpretation is that observed effects are in fact due to adaptation of 
the sensory mapping itself. This form of adaptation implies that cognitive processes 
might receive inconsistent or suboptimal encoding (Seriès et al., 2009). If feature 
maps themselves are retuning, they are altering the representation of the incoming 
stimulus hence requiring perceptual processes to compensate for this warped mapping 
or at least take it into account. Electrophysiological recordings in single neurons as 
early as auditory cortex put forth evidence in support of adaptation of sensory feature 
maps. Cortical activity in animals engaged in various behavioural tasks shows that 
tuning characteristics of these neurons exhibit rapid tuning shifts in line with the 
behavioural task at hand (Elhilali et al., 2007; Fritz et al., 2003; Lu et al., 2017; 
Winkowski et al., 2017). Effects of this adaptation can be gleaned through their neural 
spectro-temporal receptive fields (STRFs). An STRF is a measure that characterizes 
the steady state response properties of auditory neurons, spanning their temporal 
dynamics and spectral selectivity (Elhilali et al., 2013). At the level of auditory 
cortical areas, these very receptive fields reflect the inherent properties of individual 
neurons which reshape their tuning to reflect task demands and relevant targets or 
backgrounds in an auditory scene (Atiani et al., 2014; David et al., 2012; Engineer et 
al., 2014; Fritz et al., 2005).  

In this work, we examine the theoretical underpinnings of the attention-driven 
receptive field plasticity in shaping neural encoding of incoming sound signals, and 
effectively enhancing detection of target sounds in complex scenes. We focus this 
question in the case of listening to speech sounds in presence of noise interferers or 
distortions such as reverberation. Here, we review recent work which leverages STRF 
plasticity in models for robust detection of speech in presence of background noise 
(Bellur and Elhilali, 2017; Carlin and Elhilali, 2015b). We comment on implications 
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of observed changes from both models in interpreting observed changes in the 
biological system. 

MODELING RECEPTIVE FIELD PLASTICITY 

The transformations undertaken along the auditory system can be emulated by a 
multistage process whereby the incoming acoustic waveform is mapped from a one-
dimensional signal representation along time to various feature dimensions that 
highlight characteristics of the acoustic waveform along both time, frequency, and 
spectrotemporal modulations. These transformations – achieved through a variety of 
analysis maps – act as feature detectors to extract cues relevant for processing and 
interpretation of incoming signals (Eggermont, 2001; Nelken and Bar-Yosef, 2008). 

In the current work, we ask the question: How would the system behave if a sensory 
mapping stage, specifically at the level of cortical processing, would receive feedback 
that induces changes in its properties in a direction dictated by the feedback signal, 
and within constrains imposed by the system? We contrast two approaches to achieve 
such optimization, a linearized vs. nonlinear approach, as discussed next. 

A linearized optimization of receptive field plasticity  

In a first study, we examine a framework for such feedback defined in a discriminative 
fashion (Carlin and Elhilali, 2015b). In this setup, the cortical stage is retuned to 
contrast the mapping of speech and non-speech stimuli. The model starts by 
transforming all incoming signals into a time-frequency spectrogram, by employing a 
model of the auditory periphery (Chi et al., 2005). This stage maps the acoustic 
waveform ݔሺݐሻ through a series of stages including an array of asymmetric, constant-
Q band-pass filters, first order derivative, half-wave rectification and spectral 
derivative, before smoothing the responses using a short time window ݓሺݐ, ߬ሻ ൌ
݁ି

௧ ఛൗ  .ሻ to mimic the loss of phase locking observed at the level of the midbrainݐሺݑ
The auditory spectrogram ݏሺݐ, ݂ሻ is next processed by an adaptable feature extraction 
framework, based on the processes of the cortical regions and task-driven plasticity 
observed in the auditory pathway. Carlin and Elhilali (2015b) propose using an 
ensemble of adaptable STRFs to extract frequency and spectro-temporal dynamics 
information from the auditory spectrogram. STRFs used in this work are 
neurophysiologically-recorded function obtained from non-behaving ferrets (recorded 
in studies by Elhilali et al. (2004) and Fritz et al. (2003). These biological STRFs are 
used as initial spectro-temporal filters upon which attentional feedback will be applied 
to induce plastic changes in line with the discriminative framework. Since the 
approach employs biologically-obtained filters in a non-parametric form, it uses a 
linear model using logistic regression to retune these filters in a manner that enhances 
the ability of the system to detect speech in a noisy environment.  

The adaptive framework is formulated as maximizing the conditional likelihood of 
labels y with respect to the weighted ensemble response E, as defined below  

ሺܻ݌    ൌ ሻ࢝,ࡱ|ݕ ≡  ሻ        (Eq. 1)ࡱ்࢝ݕሺߪ
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where ߪሺߛሻ ൌ 1
ሺ1 ൅ exp	ሺെߛሻሻൗ  is the logistic function and ݕ ∈ ሼ൅1,െ1ሽ, ݕ ൌ ൅1 

denotes speech and ݕ ൌ െ1 denotes non-speech. Let ݎ௞ሺݐ, ݂ሻ be the firing rate of the 
݇௧௛ neuron: 

,ݐ௞ሺݎ    ݂ሻ ൌ ݄௞ሺݐ, ݂ሻ ∗௧௙ ,ݐሺݏ ݂ሻ       (Eq. 2) 

where hk (t , f ) is the transfer function of the ݇௧௛ STRF and ∗tf  is the 2D convolution 

over time and frequency axes. The corresponding modulation domain representation 
can be determined as  

   |ܴ௞ሺ߱, Ωሻ| ൌ ,௞ሺ߱ܪ| Ωሻ|. |ܵሺ߱, Ωሻ|       (Eq. 3) 

where ܴ௞ሺ߱, Ωሻ, ܪ௞ሺ߱, Ωሻ and ܵሺ߱, Ωሻ are the 2D discrete Fourier transforms of the 
firing rate, STRF and stimulus spectrogram, respectively. ߱ represents temporal 
modulations or rates (in Hz) and Ω represents spectral modulations or scale (in 
cycles/octave). The ensemble response ࡱ in Eq. 1 defined as  

ࡱ   ൌ ሾ1, ∑ |ܴଵሺ߱, Ωሻ|࣓ષ , … , ∑ |ܴ௄ሺ߱, Ωሻ|࣓ષ ሿ ∈ Թ௄ାଵ                (Eq. 4) 

is a supervector of responses of the ܭ neurons to a stimulus. ࢝ ൌ ሾݓ଴,ݓଵ, … ,  ௞ሿ inݓ
equation 1 is the vector of regression coefficients for the ܭ neurons of the ensemble.  

Throughout this framework, the model mimics common experimental paradigms 
whereby neurons are characterized with a ‘default’ tuning transfer function ܪ଴. These 
are typically obtained when the auditory system is not engaged in any active task, but 
is in a passive state. Once the system is engaged in a task, these filter parameters ܪ଴ 
are retuned, yielding adapted receptive fields ܪ௔. In the proposed framework by Carlin 
and Elhilali (2015b), the adaptation problem is cast as an optimization with goal to 
minimize the cost function ܬሺ࣢,ݓ௔ሻ defined as  

࣢௔ሻ,ݓሺܬ  ൌ
ଵ

ଶ
ଶ‖࢝‖

ଶ െ ஼

ெ
∑ ௠ሻ൯௠ࡱ்࢝௠ݕሺߪ൫݃݋݈ ൅ ఒ

ଶ
∑ ‖Δ௞‖ி

ଶ
௞      (Eq. 5) 

where ࣢௔ ൌ ሼ|ܪ௞
௔ሺ߱, Ωሻ|ሽ௞ୀଵ

௄  and Δ௞ ൌ ௞ܪ|
௔ሺ߱, Ωሻ| െ ௞ܪ|

଴ሺ߱, Ωሻ|. ܪ௞
଴ሺ߱, Ωሻ is the 

default tuning of the ݇௧௛ neuron and ܪ௞
௔ሺ߱, Ωሻ its adapted tuning. By formulating the 

adaption process in this manner, the framework seeks to obtain a weighted set of 
retuned neural ensemble that maximizes the conditional probability averaged over all 
stimuli (M). The Δ௞ term ensures that each individual neuron retunes marginally from 
its default tuning, consistent with the observation that cortical neurons maintain stable 
properties while adapting marginally to behavioral tasks (Elhilali et al., 2007). 

In order to determine the regression parameters ࢝ and retuned STRF ensemble ࣢௔, 
block coordinate descent is employed, alternating between the 2 convex problems  

.ݏ					࣢௔ሻ,ݓሺܬ	݊݅݉݃ݎܽ ௞ܪ|				.ݐ
௔ሺ߱, Ωሻ| ൒ 0	∀݇, ߱, Ω 

.ݏ					࣢௔ሻ,ݓሺܬ	݊݅݉݃ݎܽ ௞ݓ				.ݐ ൐ 0 

Upon convergence, the solution to these two convex problems can be written as  
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௞ܪ|
௔ሺ߱, Ωሻหൌ ௞ܪ|

଴ሺ߱, Ωሻห ൅ ஼

ఒ
. .௞ݓ

ଵ

ெ
∑ ௠൫1ݕ െ ,௠ሻ൯ܵ௠ሺ߱ࡱ்࢝௠ݕሺߪ Ωሻ௠         (Eq. 6) 

࢝    ൌ ஼

ெ
∑ ௠൫1ݕ െ ௠௠࢘௠ሻ൯்࢘࢝௠ݕሺߪ              (Eq. 7) 

where ܯ denotes the number of stimuli used for the adaptation process.  

It can be seen from the constraints and solution equations (Eqs. 6 and 7) that by 
enforcing the weights to be positive and using the labels ݕ௠ ൌ ൅1 for speech and 
௠ݕ ൌ െ1 for non-speech, the adaptation process seeks to enhance speech modulation 
while suppressing non-speech content. Another interesting observation relates to the 
impact of the stimulus. By interpreting 1 െ  ௠ሻ as prediction error, certainࡱ்࢝௠ݕሺߪ
stimuli that are too difficult to predict have a stronger impact on the adaptation 
process. Furthermore, it can be seen in Eq. 7 that neurons that are task-relevant receive 
larger weights in contrast to the task-irrelevant neurons.  

A nonlinear parametric optimization of receptive field plasticity  

In contrast to the approach described above, Bellur and Elhilali (2017) explore an 
alternate framework to model task-driven plasticity, focusing on 3 broad different 
takes to the optimization problem: First, the approach in Bellur and Elhilali (2017) 
employs parameterized Gabor filters to encode spectrotemporal dynamics, instead of 
physiologically recorded receptive fields. By employing parameteric functions to 
emulate cortical receptive fields, Gabor filters can be re-tuned to achieve a non-linear 
transformation in contrast to the linear adaptation of filter patches as used in Carlin 
and Elhilali (2015b). Second, instead of assigning fixed class labels ݕ௠ ൌ േ1 to 
distinguish speech from non-speech tokens, the approach in Bellur and Elhilali (2017) 
employs a generative probabilistic model using Gaussian mixture models (GMMs) to 
serve as object representations of clean speech and non-speech classes (Duda et al., 
2000). In this case, the optimization seeks to retune the Gabor filters in a manner that 
enhances the ability of the GMMs to discriminate between noisy speech and 
nonspeech, thereby adapting the feature extraction process to work even under novel 
noise conditions. Third, the optimization process employs a Genetic algorithm 
(Michalewicz, 1996). This approach differs from the convex optimization formulated 
in Carlin and Elhilali (2015b) and allows to search the parameter space for the Gabor 
filters to ensure improved discrimination between the two classes with respect to the 
fixed GMMs.   

This approach follows the same general framework as presented earlier. A time-
domain waveform is first mapped through a model of the auditory periphery to derive 
an auditory spectrogram ݏሺݐ, ݂ሻ. Then, a bank of 2D Gabor filters are applied to 
analyze the spectral and temporal modulations in the spectrogram. Such filters are 
considered a reasonable approximation of cortical receptive fields observed in the 
mammalian auditory system (Ezzat et al., 2007; Theunissen et al., 2000). The filters 
are parametrized as: 

  ݃௞ሺݐ, ݂ሻ ൌ
ఈೖ

ଶగఙ೟ೖఙ೑ೖ
݁
ିభ
మ
ቆ
೟భ
మ

഑೟ೖ
మ ା

೑భ
మ

഑೑ೖ
మ ቇ
݁ଶగ௝ሺఠೖ௧ାஐೖ௙ሻ           (Eq. 8) 
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where	ݐଵ ൌ ௞ሻߠሺݏ݋ܿݐ ൅ ௞ሻ and ଵ݂ߠሺ݊݅ݏ݂ ൌ െ݊݅ݏݐሺߠ௞ሻ ൅  ௙௞ߪ and	௧௞ߪ	.௞ሻߠሺݏ݋݂ܿ
denote the temporal and spectral bandwidths of the Gaussians of the ݇௧௛ Gabor filter, 
respectively. ߠ௞ specifies the orientation of the main lobe of the Gabor filter and ߙ௞ 
is a gain term. ߱௞ and Ω௞ are the rate and scale of the ݇௧௛ Gabor filter.  

The auditory spectrogram is convolved with a bank of Gabor filters ԭ ൌ
ሼ ଵ݃, ݃ଶ, … , ݃௄ሽ spanning the spectrotemporal space set by the chosen parameters    
(Eq. 9). The output is then collapsed along the time axis to obtain the spectrotemporal 
dynamics and frequency information as shown in equation Eq. 10.  

,ݐ௞ሺܥ    ݂ሻ ൌ ,ݐሺݏ| ݂ሻ ∗௧௙ ݃௞ሺݐ, ݂ሻ|       (Eq. 9) 

   ௞ܶሺ݂ሻ ൌ ,ݐ௞ሺܥ׬ ݂ሻ݀ݐ                               (Eq. 10) 

Like the regression approach, the Gabor filter model in Bellur and Elhilali (2017)  
starts with a default set of parameters ԭ଴ ൌ ሼ ଵ݃

଴, ݃ଶ
଴, … , ݃௄

଴ሽ analogous to the passive 
receptive fields used in Carlin and Elhilali (2015b). The Gabor parameters are then 
retuned for robust speech activity detection, to obtain an adapted filter bank of Gabor 
filters denoted as ԭ௔ ൌ ሼ ଵ݃

௔, ݃ଶ
௔, … , ݃௄

௔ሽ. These adapted filters are derived based on 
statistical models of speech and non-speech data; Gaussian mixture models of clean 
speech and nonspeech estimated based on their spectrotemporal modulation features 
(Eq. 10). A held out set of noisy speech and nonspeech data is then used adapt the 
filters in manner that enhances the ability of the GMMs to discriminate between noisy 
speech and nonspeech even in mismatched conditions. The hypothesis at the center of 
this work is that this retuning process will lead to highlighting the discriminable 
regions of the spectrotemporal modulation space as represented by the GMMs, hence 
resulting in robust speech activity detection under novel noise conditions.  

The Gabor filters are retuned using a genetic algorithm which scans the parameter 
space. It employs a fitness measure to gauge the suitability of the parameter choice. 
In Bellur and Elhilali (2017), the fitness measure used is d-prime, defined as: 

     ݀ᇱ ൌ ఓ೙ೞିఓೞ

ටభ
మ
ሺఙ೙ೞ

మ ାఙೞ
మሻ

                             (Eq. 11) 

 ௖ denote the mean and standard deviation respectively of the log likelihoodߪ ௖ andߤ
ratio (LLR) values estimated using the GMMs trained on clean speech (c=s) and 
nonspeech (c=ns) data. The genetic algorithm is initialized with the default parameters 
ሺԭ଴ሻ as a member of the first generation. The algorithm then propagates through 
multiple generations to find the fittest member (ԭ௔) as defined by the equation Eq. 11. 

OPTIMIZED MAPPING OF SPEECH AND NONSPEECH SOUND CLASSES 

Figure 1A shows results of the adaptation process in terms of the average difference 
between the modulation profiles of the STRF after and before adaptation; That is 
௞ܪ|〉

௔ሺ߱, Ωሻ| െ ௞ܪ|
଴ሺ߱, Ωሻ|〉௞ where 〈. 〉௞ denotes averaging. The figure illustrates that 

the neural ensemble tends to emphasize slower modulations especially for positive 
rates (which correspond to downward modulations), which are commensurate with 
modulations in speech sounds (Elliott and Theunissen, 2009). Given the choice of 
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label values and the fact that the weights ࢝ are set to be positive, the adaptation 
framework also leads to suppression of responses to faster modulations, hence 
diminishing the response to non-speech regions of the spectrotemporal space.  

 

Fig. 1: (A) Average difference in the responses of STRFs before and after 
adaptation using linearized regression. The difference is measured as 
௞ܪ|〉

௔ሺ߱, Ωሻ| െ ௞ܪ|
଴ሺ߱, Ωሻ|〉௞ where 〈. 〉௞ denotes the average operation 

[Figure reproduced from (Carlin and Elhilali, 2015a) with permission from 
IEEE]. (B) Δோௌ difference between the energies in the rate scale space on 
using ԭ௔  and ԭ଴  filter banks in the nonlinear optimization approach using 
Gabor filters. 

Figure 1B shows the difference between the energies in the rate scale space on using 
ԭ௔  and ԭ଴ filter banks. Δோௌ depicted in this figure is estimated as: 

  Δோௌ ൌ 〈∑ ∑ ,ݐ௠ሺݏ| ݂ሻ ∗௧௙ ԭ௔|௧௙ െ ∑ ∑ ,ݐ௠ሺݏ| ݂ሻ ∗௧௙ ԭ଴|௧௙ 〉௠ (Eq. 12) 

where 〈. 〉 denotes the average over all stimuli, both noisy speech and nonspeech. Δோௌ 
illustrates the difference in energies on projecting the stimuli on to the spectrotemporal 
modulation space using the 2 sets of Gabor filter banks. It can be seen that while 
slower modulations are emphasized, broadband fast modulations are also emphasized, 
as well fast spectral modulation at 4-Hz rate. The figure also suggests that greater 
discriminability is attained on adapting the filters because sparse non-overlapping 
regions of speech and nonspeech are emphasized on adaptation, while overlapping 
regions are suppressed.  

Further insight into the behavior of the Gabor model can be gleaned from contrasting 
the log-likelihood estimates with respect to both speech and non-speech data.  Figure 
2A shows the histogram of the log likelihood ratio values of noisy speech and non-
speech stimuli estimated, before (ԭ଴) and after adaptation (ԭ௔) of the Gabor filters. 
As can be seen from the plots, the classes are more separable on using the retuned 
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filter bank. It is interesting to note that on adaptation, the LLR values for the 2 classes 
do not necessarily move in the opposite directions, rather they become narrower 
owing to the fact that the d-prime measures reward lesser spread of the LLR values 
for a class. Figures 2B and 2C show a schematic summarizing the impact of the 
different optimization approaches on the resulting representation of speech and 
nonspeech classes. 

 

Fig. 2: (A) Histogram of the log likelihood ratio values of noisy speech and 
nonspeech stimuli before (ԭ଴) and after adaptation (ԭ௔) of the Gabor filters. 
(B, C) Schematic of changes in mapping of speech and non-speech classes 
using linearized regression vs. nonlinear optimization.  

CONCLUSIONS 

The models reviewed here shed light on two possible strategies that improve speech 
detection in noise: (i) An approach that pushes the perceptual maps of speech and 
nonspeech further apart from each other (Fig. 2B). This is achieved by reshaping the 
feature maps to emphasize acoustic cues unique to speech and de-emphasize 
characteristics of nonspeech. As shown in Fig. 1A, putting more emphasis on slow 
temporal modulations in the region around ~4 Hz results in highlighting areas known 
to correlate well with characteristics of speech signals (e.g., syllabic rate, Elliott and 
Theunissen, 2009). This outcome is achieved through a linearized optimization of 
cortical receptive fields that allows minor tweaks to their response properties in a 
linear way. 

In contrast, a parametrized approach that exhaustively searches the space of cortical 
filters represented as Gabor functions combined with statistical modeling of the 
perceptual decision space results in a different outcome by tightening the perceptual 
maps of speech vs. nonspeech classes (Fig. 2C). This outcome is an equally acceptable 
solution to the stated problem, and in fact has been shown to yield superior 
performance of speech detection in noise, especially when contrasted with novel noisy 
speech and nonspeech conditions. 
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Overall, either strategy (or combined) offers a robust biomimetic approach to adaptive 
signal processing to improve sound perception in noise. It remains to be seen which 
approach is more in line with scheme underlying neural plasticity in the brain. As 
more advanced experimental techniques emerge and paradigms are able to train 
animals on more sophisticated behavioral tasks, it will be possible to tease apart the 
theoretical underpinnings of attention-driven neural plasticity in the auditory system. 
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