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It has been demonstrated that while clean speech is well intelligible by most 
cochlear implant (CI) listeners, noise quickly degrades speech intelligibility. 
To remedy the situation, CI manufacturers integrate noise reduction (NR) 
algorithms (often using multiple microphones) in their CI processors, and 
they report that CI users benefit from this measure. We have implemented a 
single-microphone NR scheme based on spectral subtraction with minimum 
statistics to see if such a simple algorithm can also effectively increase 
speech intelligibility in noise. We measured speech reception thresholds 
using both speech-shaped and car noise in 5 CI users and 23 normal-hearing 
listeners. For the latter group, CI hearing was acoustically simulated. In case 
of the CI users, the performance of the proposed NR algorithm was also 
compared to that of the CI processor’s built-in one. Our NR algorithm 
enhances intelligibility greatly in combination with the acoustic simulation 
regardless of the noise type; these effects are highly significant. For the CI 
users, trends agree with the above finding (for both the proposed and the 
built-in NR algorithms), however, due to low sample number, these 
differences did not reach statistical significance. We conclude that simple 
spectral subtraction can enhance speech intelligibility in noise for CI 
listeners and may even keep up with proprietary NR algorithms. 

INTRODUCTION 

Signal processing chains of modern cochlear implant (CI) processors (like the 
Nucleus® CP910 from Cochlear™ or the Naída CI Q70 from Advanced Bionics) 
include noise reduction (NR) methods to enhance speech perception in noise. 
However, for studies involving novel speech processing strategies, the elements of 
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the CI’s built-in signal processing chain are typically not available. Since our 
research plans include the testing of novel strategies combined with noise reduction, 
we created our own plain NR implementation, which we will abbreviate as PNR all 
through this document. This paper describes the functional principle of PNR and 
elaborates on the study we did to test PNR with CI users and normal-hearing (NH) 
listeners. 

METHODS 

Noise reduction 

PNR is based on a single-microphone spectral subtraction algorithm that was 
proposed by Martin (1994). The first algorithm of that kind was introduced by Boll 
(1979) and many variations are widely used in communications and audio 
processing. Given a speech signal that is corrupted by additive noise, spectral 
subtraction aims at estimating the magnitude power of the noise spectrum. By 
applying one of several subtraction rules on the frames of a short time Fourier 
transform (STFT), this noise estimate is subtracted from the mixture leading to an 
approximation of the clean sound. The resulting time domain signal is obtained by 
applying the overlap-add technique. The noise is commonly only estimated in the 
magnitude or power domain while the original phase values are not modified for the 
reconstruction. This is due to the observation that estimating the phase of the clean 
signal is not crucial for the intelligibility of the resulting output (Loizou, 2007). 

Most variants of spectral subtraction use a speech activity detector in order to 
estimate the noise spectrum in speech pauses. However, this can be a source of error. 
If the detection does not work correctly, parts of the speech might contribute to the 
noise estimate and would be attenuated by the subtraction rule. The extension that is 
used in this work (Martin, 1994) circumvents this by estimating the noise spectrum 
at the minima of a smoothed power spectrum. Under the assumption that the noise 
can be observed in isolation within a certain search window, one arrives at a steadily 
updated noise floor. 

More detailed, the subband signal power Px is computed from an STFT that is 
smoothed along the time axis by a first order low-pass. The estimated minimum 
power Pmin is computed as the minimum within a given search window. By 
multiplying with a correction parameter omin that accounts for bias in the minimum 
estimate one arrives at the estimated noise power Pn=omin ·Pmin (for details see 
Martin, 1994). Given the STFT X(t,k) of the noisy signal with time index t and 
subband index k, the output Y(t,k) is computed as  

    

  (Eq. 1) 

where the spectral weighting factor Q is given as 
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    (Eq. 2) 

To improve the quality of the reconstructed signal, some more parameters have been 
introduced. Because the noise cannot be estimated perfectly, Y(t,k) contains spectral 
peaks that change rapidly between frames. In the reconstruction, this leads to audible 
tonal artefacts with fast changing frequencies that are known as musical noise. To 
reduce those peaks, the noise power is over-estimated by the factor osub. As this can 
lead to very small and even negative values, the reconstructed signal is bounded 
from below by a noise floor that can be adjusted by the factor subf. For our 
experiments, the following parameters are used: subf=0.001, osub=5.5, and 
omin=0.4. An overview of the proposed NR system is shown in Fig 1. 
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Fig 1: System overview of spectral subtraction algorithm (Martin, 1994). 

Noise types 

We used two noise types for our tests: a fluctuating speech-shaped noise 
(abbreviated ols) from the Oldenburg sentence test (OLSA, see Wagener et al., 
1999) and interior noise of a car driving steadily (abbreviated car). The two types of 
noise were normalized so that their A-weighted sound pressure level was the same 
(measured with a Phonic PAA3 handheld audio analyzer). The spectrograms are 
shown in Fig. 2. 

Subjects 

All subjects in this study were speaking German at the level of a native speaker. All 
CI users were fitted with a CP910 or CP920 processor using the ACE (Advanced 
Combination Encoder) strategy. Further details are listed in  

Table 1. 

With the hearing subjects (age min=21, max=52.6, Md=27.9 years) we performed 
bilateral pure-tone audiometry at 500, 1000, and 2000 Hz, and calculated the pure-

327



 
 
 
Matthias Leimeister, Csanád Egervári, et al. 

tone average (PTA). Based on the results (PTA min=5, max=18.3, Md=8.3 dB HL), 
all subjects could be considered normal-hearing at the time of the study. 

 

Fig. 2: Spectrograms of the two noise types: ols (left) and car (right). 

 

Subject 
Age 

 (years) 
CI 

(months) 
Nucleus 

implant type 
Lateralization Note 

S1 69 11 CI422 Bimodal Ménière’s disease 

S2 42 86 CI24RE (CA) Bilateral Congenital 

S3 13 87 CI24RE (CA) Bilateral Congenital 

S4 63 14 CI422  Bimodal Cause unknown 

S5 22 15 CI24RE Bilateral Meningitis 
 
Table 1: Demographics of cochlear-implanted subjects of the study. 

 
Acoustic simulation of cochlear implant hearing 

For normal-hearing listeners, we simulated cochlear implant hearing using the ACE 
strategy (channel stimulation rate of 900 pps with N=8 selected channels) as 
described in Chilian et al. (2011). Chilian et al. extended the signal synthesis of the 
general vocoder approach by combining two different carrier signals. As a result, 
both place and rate pitch mechanisms could be simulated. The algorithm also 
includes models of the electrode-tissue-interface and loudness perception. 

In this study, we used the following parameters for the acoustic simulation: λ=8 mm 
(range of current spread), s=0.25 (synchronisation factor), PLL=300 Hz (phase-
locking limit), αp=0.75 mm, and αs=4.5 mm (pass-band and stop-band filter 
bandwidths, respectively, as measured along the cochlea). 

Test environment 

Listening tests were performed in a soundproof booth (in accordance with the 
guidelines of ITU-R BS.1116) using a pair of Tapco S5 studio monitors (frequency 
response flatness: ±3 dB for 64 to 20000 Hz, according to the specifications) with an 
approximate loudspeakers-to-ears distance of 1 meter, driven by a Creative Sound 
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Blaster Live! 24-bit external (USB) sound card having excellent frequency response 
(within ±0.2 dB for 20 to 20000 Hz, measured with RightMark Audio Analyzer 5.5 
using an external loopback, at 48-kHz sampling rate and 24-bit resolution). 

Test procedure 

During the listening tests, we captured the speech reception threshold (SRT) using 
the Oldenburg sentence test. However, we applied some modifications to the 
original test procedure, as follows. First, we embedded the sentences in either the 
original noise (ols) or the car noise. Second, speech and noise were not spatially 
separated, but mixed and played back from both loudspeakers. Third, the volume of 
each processed sentence was set so that the sound pressure level at the ears reached 
but did not exceed 70 dB SPL(A) during the playback (based on 100-ms 
measurement windows). Processing steps are shown in Fig. 3. 

 

 

 
Fig. 3: System overview. NH and CI abbreviates normal-hearing and 
cochlear-implanted listener, respectively. 

 
Before the listening tests, all subjects were made comfortable with OLSA: After the 
explanation of the test procedure, subjects examined a table showing all possible 
words of the OLSA sentences for 3 minutes, which was then followed by a warm-up 
list of 30 sentences (with feedback). The results of the warm-up list were excluded 
from any evaluation. During the subsequent actual tests, no feedback was provided. 
Between lists of 30 sentences, subjects could choose to have a short break for 
refreshments. 

For each CI user, two variants of their everyday CI setting (map) were created: one 
with built-in NR disabled and one (otherwise identical copy) with built-in NR 
enabled. The CI processor’s program was then switched between the OLSA 
sentence lists according to the desired test condition. 

RESULTS 

The results of the listening tests are displayed in Fig. 4. For the NH listeners, the 
evaluation of the speech reception threshold, which was measured using acoustic 
simulation of CI hearing with ACE, shows statistically significant benefit with PNR 
over non-processed noise corrupted speech (for both noise types; statistical test used: 
paired-sample Wilcoxon signed rank test). The improvements in SRT (median 
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differences) with PNR were 2.45 dB for car noise and 1.025 dB for ols noise. 
Speech intelligibility in the presence of car noise was better for both unprocessed 
and processed signals, which we will further elaborate on in the discussion section.  
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Fig. 4: Overview of the main results. 

 

For CI users, a similar trend can be observed when comparing SRTs for speech 
corrupted with noise (CI ACE – without NR) and that for PNR applied to the signal 
before playback (CI ACE – with PNR). However, no statistical significance could be 
shown, which was likely due to the small sample number. The measured median 
improvements with PNR in SRT were 2.6 dB for car noise and 2.4 dB for ols noise, 
respectively. Car noise always allowed for better intelligibility than ols noise.  

Finally, when comparing the CI’s built-in noise reduction stage with PNR, the 
evaluation showed that both approaches result in improved SRT and that PNR seems 
on par with the built-in algorithm. The built-in method achieved median SRT 
improvements of 1.7 dB for car noise and 1.3 dB for ols noise. Again, to establish 
statistically significant results, a higher number of test subjects would be desirable. 

DISCUSSION 

Comparison of OLSA and car noise 

Both for CI users and NH subjects, better intelligibility could be observed in the case 
of car noise. Further analysis of the disturbed signals and intermediate stages of the 
PNR algorithm showed that the spectral shape of the used car noise is less 
destructive to the clean speech signal than that of the speech-shaped noise. The 
energy of the car noise is more stable over time than in the case of ols noise so that 
spectral subtraction can distinguish better between the noise floor and the signal of 
interest. Furthermore, it is concentrated mostly outside of the individual bands that 
are important for speech intelligibility, whereas the ols noise is concentrated in 
exactly this region of the spectrum. Fig. 5 illustrates the effect of the two noise 
types. 
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Fig. 5: Spectrograms of noisy speech after noise reduction and CI 
processing for ols noise (left) and car noise (right). 

 

Influence of processing order 

Commercial CI processors typically implement a pre-emphasis filter, which behaves 
like a high-pass filter on the audio input of the CI, just before further processing and 
filtering steps. One issue that needs further analysis is the order of pre-emphasis 
filtering and noise reduction. Because, for the sake of this study, it was not feasible 
to implement the PNR algorithm within the processing chain of commercial CI 
processors, the algorithm was applied to the audio signals before playing them back 
to the CI users. The built-in pre-emphasis filter of the CI was therefore applied after 
PNR processing. In a real-world scenario the noise reduction would run within the 
CI processing after the pre-emphasis. 

Because PNR involves taking the maximum between the noise-subtracted spectrum 
and zero, the operation is non-linear and cannot be exchanged with the pre-emphasis 
filter, as in the case of linear time-invariant filters. However, in an informal analysis, 
the signals showed only minor differences when the two processing steps were 
swapped. Visual inspection of the resulting spectrograms suggests even a slightly 
improved noise reduction for the order of pre-emphasis followed by noise reduction 
followed by the CI processing, as can be seen in Fig. 6. Given this, it would be 
interesting to implement the proposed noise reduction stage within the CI hardware 
for further analysis. 

Future directions 

There are several possible extensions to the basic PNR algorithm that could improve 
its performance, such as multi-band processing and psycho-acoustically motivated 
spectral subtraction techniques (Zoghlami et al., 2010). Among new approaches in 
the field of speech enhancement, deep neural networks become more and more 
popular. In recent studies they showed superior performance to classic methods as 
well as matrix factorization approaches (e.g., Liu et al., 2014). In addition to using 
them as a pre-processing stage, such machine learning methods might provide the 
possibility to work well directly in the coded domain of the CI, which can be an 
interesting topic for future research. 
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Fig. 6: Comparison of processing orders. Left: noise reduction – pre-
emphasis – CI processing. Right:  pre-emphasis – noise reduction – CI 
processing. 
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