Aspects of music with cochlear implants – Music listening habits and appreciation in Danish cochlear-implant users

BJØRN PETERSEN^{1,2}, MADS HANSEN^{1,3}, STINE DERDAU SØRENSEN^{4,*}, THERESE OVESEN⁵, AND PETER VUUST^{1,2}

¹ Center of Functionally Integrative Neuroscience, Aarhus University Hospital, DK-8000 Aarhus, Denmark

² Royal Academy of Music, DK-8000 Aarhus, Denmark

³ Department of Psychology and Behavioural Sciences, Aarhus University, DK-8000 Aarhus, Denmark

⁴ Department of Aesthetics and Communication, Aarhus University, DK-8000 Aarhus, Denmark

⁵ ENT department, Aarhus University Hospital, DK-8000 Aarhus, Denmark

Cochlear-implant users differ significantly from their normal-hearing peers when it comes to perception of music. Several studies have shown that structural features – such as rhythm, timbre, and pitch – are transmitted less accurately through an implant. However, we cannot predict personal enjoyment of music solely as a function of accuracy of perception. But can music be pleasant with a cochlear implant at all? Our aim here was to gather information of both music enjoyment and listening habits before the onset of hearing loss and post-operation from a large, representative sample of Danish recipients. A hundred and sixty three adult cochlear-implant users (101 females, 62 males) completed a survey containing questions about musical background, listening habits, and music enjoyment. The results indicate a wide range of success with music, but in general, the results show that the CI users enjoy music less post-implantation than prior to their hearing loss. Nevertheless, a large majority of CI listeners either prefer music over not hearing music at all or find music as pleasant as they recall it before their hearing loss, or more so.

BACKGROUND

A cochlear implant (CI) is a neural prosthesis that restores hearing sensation in deaf individuals. The clinical impact of the evolution of CIs has been nothing less than extraordinary, and over 250,000 individuals worldwide use the device (Peters *et al.* 2010). While the majority of adult CI users achieve good speech perception in quiet, auditory processing in general and music perception in particular are hampered. This is supported by several studies showing that discrimination of pitch, melody, timbre, and emotional prosody is significantly poorer in CI-users than in normally-hearing controls (Gfeller *et al.*, 2007; Cooper *et al.*, 2008; Petersen *et al.*, 2012).

^{*}Corresponding author: stinederdau@gmail.com

Proceedings of ISAAR 2013: Auditory Plasticity – Listening with the Brain. 4th symposium on Auditory and Audiological Research. August 2013, Nyborg, Denmark. Edited by T. Dau, S. Santurette, J. C. Dalsgaard, L. Tranebjærg, T. Andersen, and T. Poulsen. ISBN: 978-87-990013-4-7. The Danavox Jubilee Foundation, 2014.

Nevertheless, some users seem to overcome the technical limitations of the implant and enjoy music immensely (Gfeller *et al.*, 2000). Because music is an important part of our everyday life with great emotional and social aspects, it is reasonable to evaluate the extent of music listening in CI users and identify possible factors that impacts music appreciation. With this study, we aimed to gather information about music listening habits and music appreciation before the onset of hearing loss and after receiving an implant from a large, representative sample of Danish CI users. Furthermore, we aimed to correlate this information with self-reported measures of quality of life (QOL).

PARTICIPANTS

All adult CI recipients (≥ 18) implanted at the ENT department, Aarhus University Hospital, between January 1st 2000 and December 31st 2010, were invited to take part in the study. Of the 250 patients, 163 responded (101 female; $M_{age} = 56.4$ y; *SD* = 15.7; age range: 18 to 86 y; 65% response rate). A hundred and seventeen respondents filled out the questionnaire online, while 46 requested the printed version. The implant experience ranged from 0.4 years to 11.2 years (M = 4.3 y, *SD* = 2.65). One hundred and thirty seven (84%) participants used an implant from Cochlear® and 26 (16%) participants used an implant from Advanced Bionics®. The demographic data of the respondents are listed in Table 1.

Respondents (M/F)	Mean age (years)	Duration of profound deafness	Mean CI experience
163 (62/101)	56.44 (±15.7; 18-86)	34.5 (± 18.2; 75.3-1.1)	4.3 (± 2.6; 0.4-11.2)
Unilateral users (R/L)	Bilateral users	Users of hearing aid on non- implanted ear	Able to speak on the phone
147 (108/39)	16	73	106

Table 1: Demographic data for the 163 respondents in the study.

METHOD

The questionnaire used in the study was a modified, Danish version of the IOWA Musical Background Questionnaire (Gfeller *et al.*, 2000). The 21 questions in the survey included multiple-choice, Likert rating scales, visual analog scales, and openended questions concerning musical background, listening habits, the quality of musical sound heard through the implant, and music enjoyment prior to hearing loss and after cochlear implantation. In addition, respondents were required to fill out two questionnaires concerning their quality of life (QOL) post-implantation: the Short Form 36 (SF 36, Ware and Sherbourne, 1992) and the Glasgow Benefit Inventory (GBI, Robinson *et al.*, 1996). Here, the QOL data were used for correlational analyses.

RESULTS

Musical background

23.9% of the participants had received singing and/or instrument lessons (in primary school: M = 3.6 y; in high school: M = 1.5 y). 12.9% had been a member of a band, choir, or an orchestra. Table 2 sums up the respondents' self-assessed knowledge and experience with music. In total, 77% were involved in music to a lesser or larger extent. This is in agreement with Gfeller *et al.* (2000) and considered representative of the general population.

Category	Percentage
No formal training and only limited knowledge about music	23 %
No formal training or knowledge about music, but informal	56 %
listening experience	
Autodidact musician	3 %
Some musical training and have basic knowledge of	12 %
musical terms	
Several years of musical training, knowledge about music,	4 %
and involvement in music groups	

Table 2: Self-assessment of musical experience.

Music listening habits

The participants indicated on a four-point Likert-scale to what degree they would consider themselves as a person who often chose to listen to music (i) before the hearing loss and (ii) after receiving their implant (from 1 point = strongly disagree to 4 point = strongly agree). Furthermore, they indicated how often they chose to listen to music before their hearing loss and after getting accustomed to their implant, respectively (from 1 point = 0-2 hours per week to 4 points = 9 hours or more per week). Summed and averaged, the scores were used as mean composite scores for pre- and post-music listening habits. The mean composite score for music listening habits prior to hearing loss was 4.96 (SD = 1.86). The mean composite score for listening habits post-implantation was lower, at 4.23 (SD = 1.76). A paired *t*-test showed that the difference was significant (t = 3.6, p = 0.000).

Quality of musical sound

Figure 1 shows the mean values for the seven adjective descriptors of music through the implant. The average quality rating across all descriptors was 56.1, indicating a positive trend.

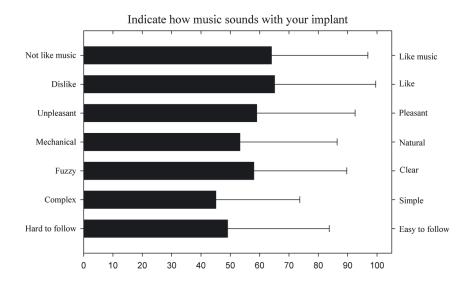


Fig. 1: Mean scores for adjective descriptors of music through the implant.

Music enjoyment

Figure 2 shows the respondents' evaluation of how their music enjoyment has changed after receiving their implant. The two rightmost categories (37%; 44%) indicate a range of music enjoyment. The left category (19%) indicates no music enjoyment.

Correlations

The ability to talk on the phone showed a weak positive correlation with both music listening habits (r = 0.233, p = 0.003), quality of musical sound (r = 0.361, p = 0.000), and enjoyment (r = 0.138, p = 0.013). Furthermore, age was negatively correlated with music listening habits (r = -0.264, p = 0.000), quality of musical sound (r = -0.245, p = 0.001), and enjoyment (r = -0.389, p = 0.000). No other demographic factors showed any significant correlation with any measures of music listening. The composite scores of the GBI questionnaire showed a significant correlation with music listening habits (r = 0.329, p = 0.000), quality of musical

sound (r = 0.408, p = 0.000), and enjoyment (r = 0.326, p = 0.000). Furthermore, the social functioning subscale of the SF 36 questionnaire data showed correlations of similar strength with the three music listening measurements.

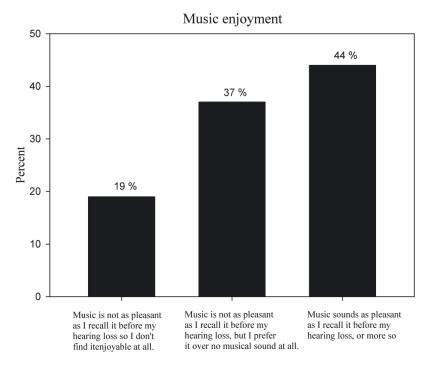


Fig. 2: Music enjoyment after implantation.

DISCUSSION

In line with findings by Gfeller *et al.* (2000), this study shows that in general adult CI users enjoy music less post-implantation than prior to hearing loss. In addition, the findings show a wide range of success with music. Interestingly, a large majority of CI listeners seem to listen to and enjoy music ranging from modest satisfaction to great enthusiasm, despite the technical disadvantages of the CI's music presentation. Furthermore, on average, the respondents describe their appreciation of different aspects of music slightly more positively than those in the Gfeller *et al.* (2000) study. This difference may suggest a benefit from the technical improvements achieved in the last decade. Interestingly, our findings indicate that solely the ability to talk on the phone is associated with success in all aspects of music listening. Previous studies found that both use of contralateral hearing aid and duration of

deafness were predictive for music perception with a CI (Looi *et al.*, 2008). However, no such correlations were found in the present study. In accordance with Lassaletta *et al.* (2007) our findings suggest an association between QOL and success in music listening. Although the causes for this association may be manifold, this suggests that music exposure or training could be beneficial not only for CI users' perception of music, but also for their QOL.

ACKNOWLEDGMENTS

This study was supported by the Augustinus Foundation, Ejner Danielsens Foundation, and Danaflex A/S.

REFERENCES

- Cooper, W.B., Tobey, E., and Loizou, P.C. (2008). "Music perception by cochlear implant and normal hearing listeners as measured by the Montreal Battery for Evaluation of Amusia," Ear Hearing, 29, 618-626.
- Gfeller, K, Christ, A., Knutson, J.F., Witt, S., Murray, K.T., and Tyler, R.S. (2000). "Musical backgrounds, listening habits, and aesthetic enjoyment of adult cochlear implant recipients," J. Am. Acad. Audiol., 11, 390-406.
- Gfeller, K., Turner, C., Oleson, J., Zhang, X., Gantz, B., Froman, R., and Olszewski, C. (2007). "Accuracy of cochlear omplant recipients on pitch perception, melody recognition, and speech reception in noise," Ear Hearing, 28, 412-423.
- Lassaletta, L., Castro, A., Bastarrica, M., Pérez-Mora, R., Madero, R., De Sarriá, J., and Gavilán, J. (2007). "Does music perception have an impact on quality of life following cochlear implantation?" Acta Oto-Laryngologica, 127, 682-686.
- Looi, V., McDermott, H., McKay, C., and Hickson, L. (2008). "Music perception of cochlear implant users compared with that of hearing aid users," Ear Hearing, 29, 421-434.
- Peters, B.R., Wyss, J., and Manrique, M. (2010). "Worldwide trends in bilateral cochlear implantation," Laryngoscope Suppl., 120, 17-44.
- Petersen, B., Mortensen, M.V., Hansen, M., and Vuust, P. (2012). "Singing in the key of life: A study on effects of musical ear training after cochlear implantation" Psychomusicology: Music, Mind and Brain, 22, 134-151.
- Robinson, K., Gatehouse, S., and Browning, G.G. (1996). "Measuring patient benefit from otorhinolaryngological surgery and therapy," Ann. Otol. Rhino. Laryn., 105, 415-422.
- Ware, J.E., Jr, and Sherbourne, C.D. (1992). "The MOS 36-item short-form health survey (SF-36). I. Conceptual framework and item selection," Med. Care, 30, 473-483.