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addition, the responses become closer to the correct answer, since the mean angle (μ � )
of all ears per token decreases with NALR. Therefore, NALR not only decreases the
randomness of the answers but also causes the ears to agree more on a token basis.
This gives hope for training of listeners with their specific problems, since they all
seem to agree on the signal they hear. Given the presented data, we have demonstrated
the effectiveness of NALR using a speech test instead of pure tone tests. This suggests
that a carefully constructed speech test can be used as a diagnostic tool: From the
results listed in Table 2, we know all listeners for whom CV tokens cause problems and
therefore can get detailed information about their hearing loss. Carefully characterized
CVs can be used to find specific problems in HI subjects, that PTTs cannot.
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Auditory training programs are currently being explored as a method of
improving hearing-impaired (HI) speech perception; precise knowledge of
a patient’s individual differences in speech perception allows one to more
accurately diagnose how a training program should be implemented. Re-
mapping or variations in the weighting of acoustic cues, due to auditory
plasticity, can be examined with the detailed confusion analyses that we
have developed at UIUC. We show an analysis of the responses of 17 ears
with sensorineural hearing loss to consonant-vowel stimuli, composed of 14
English consonants followed by the vowel /A/, presented in quiet and speech-
shaped noise. Although the tested tokens are noise-robust and unambiguous
for normal-hearing listeners, the subtle natural variations in signal properties
can lead to systematic differences for HI listeners. Specifically, our recent
findings have shown token-dependent individual variability in error and
confusion groups for HI listeners. A clustering analysis of the confusion data
shows that HI listeners fall into specific groups. Many of the token-dependent
confusions that define these groups can also be observed for normal-hearing
listeners, under higher noise levels or filtering conditions. These HI-listener
groups correspond to different acoustic-cue weighting schemes, highlighting
where auditory training should be most effective.

INTRODUCTION

One of the primary goals of auditory training techniques is improving the consonant
recognition of listeners with sensorineural hearing loss. Training has been shown to
be effective treatment in terms of both consonant and word recognition; the work of
Boothroyd and Nittrouer (1988) and Bronkhorst et al. (1993) generalizes these results
by demonstrating how the perception of individual phones and low-context syllables
predicts the perception of words and sentences. Although significant improvements
can be observed from both analytic and synthetic training (Sweetow and Palmer,
2005), the effects are difficult to measure and are most easily observed for listeners
with the most pre-training recognition error (Walden et al., 1981). Analysis of the
effects of training tends to focus on discrimination ability and overall error; the effects
on consonant confusions would provide an additional dimension to the analysis, often
without the collection of additional data.

In general, auditory training methodologies do not focus on the listener-specific
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consonant recognition deficiencies (i.e., individual differences) that are present prior
to the training period. Although an identical, overarching approach is desirable
when initially assessing the efficacy of a training scheme, it may not be the most
beneficial for providing treatment to the patient population. Our previous works
(Trevino and Allen, 2013a,b) have shown that patients with mild-to-moderate hearing
loss have consonant recognition errors that are usually limited to a small subset of test
consonant-vowel tokens. This indicates that, for maximum efficacy and efficiency,
a targeted approach is necessary in the implementation of training programs. In
addition, we have explored the significant effects of talker variability on HI perception,
particularly across tokens of the same consonant (i.e., within-consonant perceptual
differences). These within-consonant differences, again, highlight the need for a
targeted, patient-specific approach, as well as the importance of considering token
variability in the analysis of perceptual data.

The confusion matrix has been the fundamental basis for analyzing consonant
recognition data for over 50 years (Miller and Nicely, 1955). In this paper, we
introduce a technique, k-means clustering based on the Hellinger distance, for
analyzing similarity of consonant confusions. This analysis is performed on a token-
by-token basis, as recommended in the conclusions of our previous works on within-
consonant HI perceptual differences (Trevino and Allen, 2013a,b). A more precise
understanding of how HI listeners are using the acoustic cues that are available to
them provides a detailed diagnosis, which could be used to refine the implementation
of auditory training programs.

METHODS

Subjects

Nine subjects with sensorineural hearing loss were recruited for this study from the
Urbana-Champaign, IL community. All subjects reported American English as their
first language and were paid to participate. Typanometric measures showed no middle-
ear pathologies (type A tympanogram). The ages of eight HI subjects ranged from 65
to 84; one HI subject (14R) was 25 years old. Based on the pure-tone thresholds, all
ears had > 20 dB of hearing loss (HL) for at least one frequency in the range 0.25-4
kHz.

The majority of the ears in our study have slight-to-moderate hearing loss with high-
frequency sloping configurations. One HI ear (14R), has an inverted high-frequency
loss, with the most hearing loss < 2 kHz and a threshold within the normal range
at 8 kHz. For further listener details, including level of hearing loss, age, and most
comfortable level, see Trevino and Allen (2013a,b).

Speech materials

All stimuli used in this study were selected from the Linguistic Data Consortium
Database (LDC-2005S22). Speech was sampled at 16 kHz. Fourteen naturally-spoken
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American English consonants (/p, t, k, f, s, S, b, d, g, v, z, Z, m, n/) were used as
the test stimuli. Each consonant was spoken in an isolated consonant-vowel (CV)
context, with the vowel /A/. Two tokens were selected (1 male and 1 female talker) for
each consonant, resulting in a total of 28 test tokens (14 consonants × 2 talkers = 28
tokens). The term token is used throughout this work to refer to a single CV speech
sample from one talker.

The 28 test tokens were selected based on their NH perceptual scores in quiet and
speech-weighted noise. To ensure that tokens were unambiguous and robust to noise,
each token was selected based on a criterion of ≤ 3.1% error for a population of 16
NH listeners, calculated by combining results in quiet and −2 dB signal-to-noise ratio
(SNR) of noise (i.e., no more than 1 error over a total N=32, per token) (Phatak and
Allen, 2007). Such tokens are representative of the LDC database; Singh and Allen
(2012) shows, for the majority of tokens, a ceiling effect for NH listeners ≥ −2 dB
SNR. One token of /fA/ (male talker, label m112) was damaged during the preparation
of the tokens, thus it has not been included in this analysis.

The stimuli were presented with flat gain at the most comfortable level (MCL) for each
individual HI ear. For the majority of the HI ears the MCL was approximately 80±4
dB SPL; only two subjects did not choose an MCL within this range (36L/R chose
68/70 dB SPL and 14R chose 89 dB SPL).

Experimental procedure

The speech was presented at 4 SNRs (0, 6, 12 dB, and quiet) using speech-weighted
noise, generated as described by Phatak and Allen (2007). Presentations were
randomized over consonant, talker, and SNR. The total number of presentations for
each consonant ranged from N = 40-80 for each HI ear (total N = 5-10 over two
adaptive phases × 2 tokens × 4 SNRs). The Vysochanskiı̈–Petunin inequality was
used to verify that the number of trials was sufficient to determine correct perception
within a 95% confidence interval, as described in the appendix of Singh and Allen
(2012).

All of the data-collection sessions were conducted with the subject seated in a single-
walled, sound-proof booth. The speech was presented monoaurally via an Etymotic
ER-3 insert earphone. The contralateral ear was not masked or occluded. The subject
chose their MCL (for non-test speech samples) before testing began. A practice
session, with different tokens from those in the test set, was run first in order to
familiarize the subject with the testing paradigm and to confirm their MCL setting.
After hearing a single presentation of a token, the subject would choose from the
14 possible consonant responses by clicking one of 14 CV-labeled buttons on the
graphical user interface, with the option of up to 2 additional token repetitions, to
improve accuracy. Additional experimental details are provided in Han (2011) and
Trevino and Allen (2013a,b).
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Data analysis

The variability of naturally-spoken acoustic cues can lead to HI within-consonant
differences in both error and consonant confusions (Trevino and Allen, 2013a,b);
therefore, calculations at the token level are necessary in any analysis that attempts
to understand how a HI listener is using and interpreting the acoustic cues that are
available to them. In this paper, the data are analyzed at the token level, with individual
data points for the HI ears.

The Hellinger distance is a metric for computing the distance between two probability
distributions. The probability distributions that we compare in this paper are the ones
defined by each row of a confusion matrix. In the case of this experiment, there are
14 possible consonant responses. This vector of probabilities can be considered as
a point in 14-dimensional space, where each dimension corresponds to each possible
consonant response. Distances between confusion results are computed within this 14-
dimensional space; the distances provide a measure of consonant-confusion similarity,
which can be used to compare HI ears, SNRs, or tokens.

We will show that the squared Hellinger distance is equivalent to 1 minus the direction
cosine, when computed from the square root of probabilities. This relationship allows
us to use widely-known algorithms that employ 1 minus the direction cosine, such as
spherical k-means clustering, to analyze the data. Let Pr|s(snr,HI) be the probability
of the consonant response r for a fixed stimulus s, SNR, and HI ear; the probabilities
for all possible responses for a fixed stimulus would be a row of the confusion matrix.
A data point in the 14-dimensional space, x, is then defined as xi =

√
Pri|s(snr,HI),

i= 1,2,3, . . .14. Since the vector is composed of probabilities that sum to 1, the points
lie on the unit sphere, ||x||= 1. Let x,y be two data points in the 14-dimensional space.
We define the notation for an inner product as

< x,y >= ∑
i

xiyi

and the norm as
< x,x >= ||x||2 = ∑

i
x2

i .

Then the square of the Hellinger distance

H2(x,y) =
1
2
||x−y||2 = 1

2
(||x||2 −2 < x,y >+||y||2)

= 1−< x,y >= 1−||x||||y||cos(Θxy) = 1− cos(Θxy).

Thus, the spherical k-means algorithm, which forms groups based on 1− cos(Θxy)
between points distributed on the unit sphere, produces results that also minimize the
Hellinger distance. The spherical k-means clustering algorithm is implemented in
MATLAB, with the kmeans() function. For each token, one of the clusters is always
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composed of the data points where HI listeners correctly perceived the consonant; the
remaining clusters are composed of the data with varying degrees of error. Therefore,
assuming there are errors, the minimum possible K for a token is 2.

Additionally, the angle between the HI listener response x and the plane representing
the ‘primary’ confusion groups can be calculated. With this implementation, HI-
listener data that contain varying degrees of the same primary confusions would show
zero distance between the points; non-zero distances would indicate the degree of
deviation from the primary confusion group.

The k-means algorithm groups HI-listener data that are similar in terms of the
confusions. The size and number of clusters is a function of the diversity of hearing
impairment across listeners in the study (i.e., there is no fixed prior), therefore, a k-
means implementation which does not assign a prior probability to each cluster models
the experimental setup more realistically than a Gaussian Mixture Model (GMM). The
G-means algorithm (Hamerly and Elkan, 2004) was added to the implementation in
order to automatically select the number of means, K, based on an Anderson-Darling
test of statistical significance.

RESULTS

For a fixed consonant token, HI listeners vary widely in both the degree of error and the
SNR threshold at which errors begin to occur. Despite this individual variability, we
have observed that different HI ears tend to have similar token-dependent confusions
once an error is made (Trevino and Allen, 2013b). If HI listeners generally share a
similar confusion group for a particular token, then an auditory training scheme that
corrects for this confusion should be effective for a broad population of patients. In
order to explore the extent of the similarities across HI listeners, we use the spherical
k-means clustering algorithm to group the listeners based on confusions. The data at
all tested SNRs is used together in the k-means clustering analysis, since the different
severities of hearing impairment across the many listeners leads to errors at different
SNRs.

Each cluster identified by the k-means algorithm is composed of listeners with similar
consonant confusions. The number of clusters, K, for each token is determined
by the G-means algorithm, which selects K iteratively based on a statistical test of
the cluster distributions (Hamerly and Elkan, 2004). As a result of incorporating
the statistical test, the number of resulting clusters K is the amount of significantly
different confusion groups that are present in our data. For example, the case of two
resulting clusters, K = 2, indicates that all of the listener data are distributed within
the cluster of correct-response data points and a second cluster defined by a single
confusion group. From the results in Table 1, we see that 17 out of the 27 tokens have
K ≤ 3, indicating that all of the HI data for these tokens fall into one of 3 confusion-
based clusters. 22 out of 27 tokens have K ≤ 4. This small number of clusters for
the majority of tokens indicates that, generally, only a few token-dependent confusion
groups are present in the HI data.
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For each cluster, the primary confusions that define the kth mean, along with the
number N of data points within each cluster, are included in Table 1. Results for the
cluster of ‘correct’ responses (i.e., the cluster of data with no more than 1 error over
5-10 trials) are also included. From the results in Table 1, we see that the confusions
that define the clusters can vary across tokens of the same consonant. For example,
/d, g, v/ confusions are present for the female /bA/ token, while only /v/ confusions
dominate the responses for the male /bA/ token. In addition, the large number of data
points, N, in the ‘correct’ clusters of all tokens indicates that the mild-to-moderate
HI listeners in this study did not have widespread errors. These are observations that
have been made previously in Trevino and Allen (2013b); this analysis shows how
these observations can also be made from the results of k-means clustering.

The extent of the similarity across listener responses can be quantified by the angle
between the points in the spherical vector space. These angles can be expressed as
direction cosines or Hellinger distances, as described in the Methods section, and can
range from 0◦to 90◦. The angle Θx,μk between a data point x in the kth cluster and the
kth cluster mean μk provides a measure of how well each mean represents the overall
group of data points. The average of this measure, Θ̂x,μk , is analogous to the variance
within each cluster. Results for Θ̂x,μk are shown in Table 1. For reference, when each
data point x is the result of 5-10 presentations, as ours are, an angle of 18◦-27◦lies
between a vector of correct responses and a vector with a single incorrect response.
Overall, the clusters defined by a larger number of primary confusions have larger
Θ̂x,μk values. Systematic groupings of HI data in terms of consonant confusions is
observed for all the tested tokens.

DISCUSSION

Our past studies (Trevino and Allen, 2013a,b) have found that HI listeners with mild-
to-moderate hearing loss make errors with only a small subset (< 25%) of listener-
dependent consonant tokens at low noise levels, although the error for these tokens
can be as high as chance performance. In addition, we observed significant individual
variability across HI ears in terms of the degree of error and which sounds are
perceived in error, despite similar hearing thresholds. These findings verify the need
for an individualized approach when implementing an auditory training program.
Based on our data, an individualized auditory training program would, ideally, first
identify the sounds/acoustic cues that a HI listener has difficulty with in quiet and low-
levels of noise, in order to focus the training appropriately. In addition, this initial test
would provide a precise outcome measure after the training is completed. A test that
identifies a HI listener’s difficulties in terms of identifying and interpreting acoustic
cues would be ideal when prescribing such a training program. A context-free, high-
entropy (i.e., large response set), consonant identification task paired with a token-
level analysis allows one to identify the specific acoustic cue-processing difficulties of
each HI individual.

We have introduced k-means clustering as a flexible tool for analyzing confusion
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CV kth Mean (N) Θ̂x,μk CV kth Mean (N) Θ̂x,μk

bAF101 k1 : correct (39) 12◦ bAM112 k1 : correct (32) 15◦
K = 2 k2 : b, d, g, v (29) 36◦ K = 4 k2 : b, v (21) 27◦

k3 : b, v (9) 19◦
dAF105 k1 : correct (61) 10◦ dAM118 k1 : correct (61) 10◦
K = 3 K = 2 k2 : d, g, t (7) 25◦
fAF109 k1 : correct (39) 14◦ -
K = 2 k2 : f, s, v (29) 34◦
gAF109 k1 : correct (35) 8◦ gAM111 k1 : correct (54) 10◦
K = 2 k2 : b, d, f, g, v (33) 48◦ K = 4
kAF103 k1 : correct (50) 11◦ kAM111 k1 : correct (56) 9◦
K = 3 k2 : k, p, t (11) 25◦ K = 2 k2 : k, t (12) 23◦

k3 : t (7) 22◦
mAF103 k1 : correct (46) 11◦ mAM118 k1 : correct (61) 9◦
K = 3 k2 : m, v (12) 28◦ K = 2 k2 : m, n, v (7) 16◦

k3 : m, n (10) 26◦
nAF101 k1 : correct (52) 10◦ nAM118 k1 : correct (43) 12◦
K = 4 k2 : m, n (9) 25◦ K = 4 k2 : m, n (15) 4◦
pAF103 k1 : correct (59) 13◦ pAM118 k1 : correct (61) 12◦
K = 6 K = 2 k2 : f, p, t, z (7) 35◦
sAF103 k1 : correct (55) 11◦ sAM120 k1 : correct (45) 11◦
K = 3 k2 : s, Z, z (7) 26◦ K = 5 k2 : s, z (11) 10◦
tAF108 k1 : correct (61) 6◦ tAM112 k1 : correct (62) 6◦
K = 2 k2 : f, p, s, t (7) 40◦ K = 2
vAF101 k1 : correct (43) 11◦ vAM118 k1 : correct (29) 14◦
K = 3 k2 : f, v (15) 32◦ K = 7 k2 : p, v (12) 25◦

k3 : b, d, m, n, v (10) 38◦ k3 : m, n, v (11) 28◦
SAF103 k1 : correct (60) 7◦ SAM118 k1 : correct (65) 6◦
K = 2 k2 : s, S, z (8) 24◦ K = 2
ZAF105 k1 : correct (42) 11◦ ZAM107 k1 : correct (36) 13◦
K = 4 k2 : z (16) 18◦ K = 3 k2 : g, Z, z (17) 32◦

k3 : v, Z, z (15) 38◦
zAF106 k1 : correct (35) 14◦ zAM118 k1 : correct (38) 14◦
K = 7 k2 : Z, z (11) 9◦ K = 6 k2 : Z, z (11) 18◦

k3 : s, Z, z (8) 19◦ k3 : v, Z, z (9) 20◦

Table 1: Clustering results for 27 CV tokens. Talker gender and identification
number are indicated by the CV subscript. The resulting total number of
clusters K is included in the CV column. Each row shows the data for a
single cluster; to focus on clusters with similar listeners, clusters with less
than 6 data points are omitted. The main confusions comprising the kth cluster
means (> 5%) are listed under kth Mean (N), with N being the number of data
points within each cluster (out of 68 total). Similarities across HI ears within
a cluster are quantified by the average angle between the members of each
cluster and the kth mean, Θ̂x,μk .
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For each cluster, the primary confusions that define the kth mean, along with the
number N of data points within each cluster, are included in Table 1. Results for the
cluster of ‘correct’ responses (i.e., the cluster of data with no more than 1 error over
5-10 trials) are also included. From the results in Table 1, we see that the confusions
that define the clusters can vary across tokens of the same consonant. For example,
/d, g, v/ confusions are present for the female /bA/ token, while only /v/ confusions
dominate the responses for the male /bA/ token. In addition, the large number of data
points, N, in the ‘correct’ clusters of all tokens indicates that the mild-to-moderate
HI listeners in this study did not have widespread errors. These are observations that
have been made previously in Trevino and Allen (2013b); this analysis shows how
these observations can also be made from the results of k-means clustering.

The extent of the similarity across listener responses can be quantified by the angle
between the points in the spherical vector space. These angles can be expressed as
direction cosines or Hellinger distances, as described in the Methods section, and can
range from 0◦to 90◦. The angle Θx,μk between a data point x in the kth cluster and the
kth cluster mean μk provides a measure of how well each mean represents the overall
group of data points. The average of this measure, Θ̂x,μk , is analogous to the variance
within each cluster. Results for Θ̂x,μk are shown in Table 1. For reference, when each
data point x is the result of 5-10 presentations, as ours are, an angle of 18◦-27◦lies
between a vector of correct responses and a vector with a single incorrect response.
Overall, the clusters defined by a larger number of primary confusions have larger
Θ̂x,μk values. Systematic groupings of HI data in terms of consonant confusions is
observed for all the tested tokens.

DISCUSSION

Our past studies (Trevino and Allen, 2013a,b) have found that HI listeners with mild-
to-moderate hearing loss make errors with only a small subset (< 25%) of listener-
dependent consonant tokens at low noise levels, although the error for these tokens
can be as high as chance performance. In addition, we observed significant individual
variability across HI ears in terms of the degree of error and which sounds are
perceived in error, despite similar hearing thresholds. These findings verify the need
for an individualized approach when implementing an auditory training program.
Based on our data, an individualized auditory training program would, ideally, first
identify the sounds/acoustic cues that a HI listener has difficulty with in quiet and low-
levels of noise, in order to focus the training appropriately. In addition, this initial test
would provide a precise outcome measure after the training is completed. A test that
identifies a HI listener’s difficulties in terms of identifying and interpreting acoustic
cues would be ideal when prescribing such a training program. A context-free, high-
entropy (i.e., large response set), consonant identification task paired with a token-
level analysis allows one to identify the specific acoustic cue-processing difficulties of
each HI individual.

We have introduced k-means clustering as a flexible tool for analyzing confusion
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Table 1: Clustering results for 27 CV tokens. Talker gender and identification
number are indicated by the CV subscript. The resulting total number of
clusters K is included in the CV column. Each row shows the data for a
single cluster; to focus on clusters with similar listeners, clusters with less
than 6 data points are omitted. The main confusions comprising the kth cluster
means (> 5%) are listed under kth Mean (N), with N being the number of data
points within each cluster (out of 68 total). Similarities across HI ears within
a cluster are quantified by the average angle between the members of each
cluster and the kth mean, Θ̂x,μk .
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matrix data. Such a clustering analysis can be conducted without averaging across
tokens, consonants, SNRs or HI ears. The k-means clusters of HI data correspond
to different acoustic cue-weighting schemes and indicate where auditory correction
or training may be useful. Although there are many individual differences across HI
listeners, the small number of resulting clusters from the analysis of our data shows
that the listeners are processing and interpreting the acoustic cues that are present in
speech similarly. These results suggest that, once the sounds that are difficult for a
HI listener are diagnosed by a speech test, a common cue-correction scheme can be
effective for a broad population of listeners.
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Speech reception thresholds (SRTs) in noise improve when the speech and 
noise sources are spatially separated. This spatial release from masking 
(SRM) is usually investigated in fixed-head situations. We studied free-head 
situations in audio and audio-visual conditions. We compared normally-
hearing and cochlear-implant (CI) users’ spontaneous and directed head-
orientation strategies when attending to speech in noise with a progressively 
declining signal-to-noise ratio. SRM-model predictions suggested benefits 
of head orientation away from the target speech that we hypothesized would 
motivate head rotation. As signal-to-noise ratio declined, observed head 
tracks differed greatly between listeners. Audio-visual presentation reduced 
the amount of head rotation. When directed, listeners made more effective 
use of head rotation. Audio and audio-visual SRTs were acquired at fixed, 0, 
and 30 deg head orientations with respect to the target speech. At the most 
favourable 30-deg head orientation, SRM reached 8 and 6 dB for NH 
listeners and CI users respectively. Lip-reading yielded improvements of 3 
and 5 dB on average across conditions. CI users confirmed that training in 
optimizing both their position and head orientation with respect to target 
speaker and noise source position in a social setting was both currently 
missing and likely valuable. 

INTRODUCTION
Bilateral cochlear implantation provides service users with several benefits over 
unilateral implantation. In addition to sound-source localization being made possible 
to some extent, Van Hoesel and Tyler (2003) showed that bilateral cochlear-implant 
users (BCIs) benefit from improved speech intelligibility in noise (SpIN) when 
speech and noise sources are spatially separated. However most studies to date have 
considered such spatial release from masking (SRM) in a fixed-head situation (e.g., 
Van Hoesel and Tyler, 2003; Litovsky et al., 2006; Loizou et al., 2009). 
Furthermore and with few exceptions, most examined SRM by comparing speech 
co-located with noise in front of the listener with speech in front and noise 
azimuthally separated by 90 deg to the left or to the right, configurations known to 
not make optimum use of the head-shadow effect due to the bright spots located at 
±90 deg. Our model of SRM (Jelfs et al., 2011) predicted the spatial configuration 
providing the maximum benefits of bilateral over unilateral implantation, later 
confirmed by Culling et al. (2012) with normally hearing-listeners (NHs) and 
cochlear-implant users (CIs). The SRM model could also be used to predict how 
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