
the recent loudness model by Chen et al. (2011) showed that the SMR approach is 
able to restore loudness perception for narrow- and broad-band signals. Thereby, the 
SMR algorithm requires information about the individual loudness perception of 
broad-band signals. A first approach to gather this information from predictions of 
the loudness model of Chen et al. (2011) failed, because the model could not be 
adjusted to correctly predict loudness perception for narrow-band signals. The model 
predictions in the lower loudness domain (between ‘very soft’ and ‘soft’) for the HI 
listeners were too low for all possible model parameter configurations when 
compared to the measured loudness in CLS. 

As a conclusion, the SMR-algorithm requires to be adjusted using additional CLS 
measurements with broad-band signals. Further evaluations of the SMR algorithm 
using CLS of different everyday signals will show if the individually-adjusted SMR-
algorithm restores the loudness perception to normal for narrow- and broad-band 
signals. Further improvements of recent loudness models to predict the individual 
loudness perception of a single HI is required for future research and fitting of 
model-based algorithms which individually restore loudness for a variety of stimuli. 
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Consonant vowel (CV) identification experiments in masking noise with
16 hearing-impaired (HI) ears at two different gain conditions, i.e., flat-
gain (FG) and spectral correction (National Acoustic Laboratory Revised
prescriptive procedure, NALR), were administered (Han, 2011). In both
gain conditions, listeners were directed to adjust the presentation level to
their most comfortable loudness (MCL). MCL testing runs contrary to the
common approach of adjusting the presentation level, depending on the
pure tone thresholds (PTTs) and the long term average speech spectrum
(LTASS) (Posner and Ventry, 1977; Zurek and Delhorne, 1987). The results,
however, prove that for speech testing MCL is justified. A more rigorous
definition for audibility based on entropy in recognition experiments is
provided. Furthermore, the effectiveness of NALR for CV perception is
investigated. The average error went down from 20.1% (σ = 3.7) to 16.3%
(σ = 2.8). For 50.5% of the token1-ear pairs (TEPs) the error and entropy
both went down, while for 15.1% of the TEPs the entropy and error went up
with NALR. In order to evaluate statistically siginificant effects of NALR,
the confusion matrix data were clustered, and the number of ears which
switched clusters when NALR was applied were investigated. In addition,
the subjects’ confusions under both conditions were studied and compared to
the confusions of other HI and normal-hearing (NH) subjects.

INTRODUCTION

The goal of this research is to better understand speech perception in hearing-impaired
ears. The human speech recognition (HSR) group at the University of Illinois at
Urbana-Champaign takes the approach to look at CV recognition tasks of NH as
well as HI subjects. CVs are chosen, as opposed to words, phrases, or sentences
in order to reduce the influence of higher-order (context) processing in the auditory
pathway, which permits the control of differences in cognitive abilities (e.g., memory,
semantics) (Miller et al., 1951). A second goal of this paper is to address what
audibility means in speech perception experiments and to determine how it can be
verified. Lastly, we will show that, despite its high variability, speech as a test for
hearing loss and hearing-aid evaluation can deliver more detailed insights than the
commonly used pure tones, which is in contrast to what Walden et al. (1983) and
Zurek and Delhorne (1987) suggested.

1In this document a token is defined as a recorded sound (i.e., CV). One consonant (e.g., /p/) can
have many tokens.
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Fig. 1: PTTs for the sixteen ears

HI ear Age PTA MCL
FG NALR

44L 65 10 82 77
44R 65 15 78 77
46L 67 8.3 82 85
46R 67 16.6 82 86
40L 79 21.6 79, 81
40R 79 23.3 80 80
36L 72 26.6 68 75
36R 72 28.3 70 75
30L 66 30 80 79
30R 66 26.6 80 79
32L 74 35 79 81
32R 74 26.6 77 78
34L 84 31.6 84 85
34R 84 28.3 82 85
02L 82 45 83 88
02R 82 46.6 82 89

(μ ,σ ) (74,7) (29,15) (79,4) (81,5)

Table 1: Subjects’ age,
PTAs and MCLs (dB SPL)

METHODS

The two conditions (i.e., FG and NALR) were administered as separate experiments
(Han, 2011). Each of the 8 subjects (16 HI ears) passed a middle-ear examination
and their hearing thresholds were measured before each experiment. All 16 ears had
mild-to-moderate hearing loss. Fig. 1 shows the fitted PTTs according to Trevino
(2013).

The CV syllables consisted of 14 consonants (6 stops, 6 fricatives, and 2 nasals)
followed by /a/. Two talkers (1 male and 1 female) were selected per consonant.
The tokens were chosen from those for which there was less than 3% error at
SNRs <−2 dB in previous NH experiments. The male tokens for /f, s, Z, n/ + /a/
were removed from the analysis, because they had to be changed between the two
conditions, leaving 12 CVs for comparison (24 tokens). The tokens used for the
experiments are well characterized: the perceptual cues have been identified by the
3DDS method (Li et al., 2012) and the CMs at 6 SNRs were previously determined in
both white noise and speech weighted noise.

The subjects were able to adjust the presentation level at any time during the
experiment, however, as seen in Table 1 only 40L made use of this option. All of
the subjects had one practice session before they began the experiment. Syllable
presentation was randomized over consonants, speakers, and SNRs (12, 6, and 0 dB,
plus quiet). For each condition, SNR and subject, a token was presented between 5
and 10 times (depending on the error); this resulted in 800-1000 trials per subject.

RESULTS

The resulting confusion matrices (CM) were analyzed using the following tools.
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Entropy

Information theory and entropy were introduced by Shannon (1948). Miller and
Nicely (1955) were the first to apply an entropy analysis to speech confusion data.
Entropy, a measure of the randomness of a response, is defined as the expected value
of the information (log(1/pi)), the CM row sum is ∑i pi = 1, where i = 1 . . .14 (14 is
the number of possible responses):

H (p) =
I

∑
i=1

pilog2

(
1
pi

)
. (Eq. 1)

Audibility: Posner and Ventry (1977) found that subjects perform below their
maximum speech discrimination abilities if tested under MCL conditions. The data,
however, suggest that most tokens were fully audible to all the subjects under both
conditions. We suggest that calculating the entropy in quiet is a more meaningful
audibility measure for CV identification experiments than LTASS and PTTs. Low
entropy implies consistency, which is a strong test of audibility, even if the error is
high (cf. Fig. 2 (a)).
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Fig. 2: (a) Pe vs H plot for all subjects and tokens in quiet (FG condition).
Entropy is low, even though in many cases the error is high, thus audibility
is not an issue. The 2-bit curve is a reasonable audibility threshold based on
the Miller and Nicely (1955) confusion groups. According to this definition
only the female token of /gA/ is not audible for subject 46R. All the other
sounds are audible for all subjects. (b) The standard deviation of the angles
between the correct response and the ears decreases with NALR in all but the
four labeled cases (fg, fp,fv, mv) subjects responded more consistently, (mv
= male /va/ token).

Effects of NALR: 24 tokens can be compared between the two experiments and
16 ears. This results in 384 cases, when collapsed over SNR. Those cases can be
categorized according to how the entropy and error changed from the FG to the NALR
experiment. Most of the cases (50.5%) are the cases where NALR decreased both the
entropy and error. The second largest group is the one where NALR increased both the
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(2013).
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followed by /a/. Two talkers (1 male and 1 female) were selected per consonant.
The tokens were chosen from those for which there was less than 3% error at
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conditions, leaving 12 CVs for comparison (24 tokens). The tokens used for the
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The subjects were able to adjust the presentation level at any time during the
experiment, however, as seen in Table 1 only 40L made use of this option. All of
the subjects had one practice session before they began the experiment. Syllable
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Entropy

Information theory and entropy were introduced by Shannon (1948). Miller and
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is not an issue. The 2-bit curve is a reasonable audibility threshold based on
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only the female token of /gA/ is not audible for subject 46R. All the other
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Effects of NALR: 24 tokens can be compared between the two experiments and
16 ears. This results in 384 cases, when collapsed over SNR. Those cases can be
categorized according to how the entropy and error changed from the FG to the NALR
experiment. Most of the cases (50.5%) are the cases where NALR decreased both the
entropy and error. The second largest group is the one where NALR increased both the
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entropy and error (15.1%). The other two categories only contain the few remaining
TEPs (cf. Fig. 3).

Fig. 3: Categorization of the CV perception data for the 24 tokens and 16
listeners collapsed over four SNRs. For 102 (26.6%) of the 384 TEPs there
was zero error in both conditions. The remaining 282 TEPs are grouped into
one of 4 major categories, in the category labels the first arrow indicates what
affect NALR had on the entropy, the second one indicates what happen to
the error with NALR: (↓↓) (50.5%), (↓↑) and (↑↓) are small categories (4.4%
and 3.4%)(↑↑) (15.1%). The histograms display the listener (top) and token
(bottom) distributions. They show many of the TEPs in one category belong
to a particular ear or token. The black bars represent the left ear and the male
token, respectively, whereas the white bar represents the right ear and the
female token, respectively. The * indicates the male token was excluded for
the analysis (e.g., Za*).

Direction cosine

Every confusion matrix defines a vector space, where each row is a vector in that
space. In order to find the distance between two tokens (rows), a norm must be defined:
we chose a metric called the Hellinger Distance (HD), which uses the square roots of
the probability vectors p. Via Schwartz’s inequality, it is possible to calculate an
angle θlm between any two tokens in the vector space. The angle is a measure of how
different two response vectors are. The HD can also be used to measure the difference
between the two experiments or between a listener’s response and the correct answer.
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The HD seems to be an underutilized measure for the analysis of CMs.

cos θlk = pl ·pm =
I

∑
i=1

√
pl,i

√
pm,i (Eq. 2)

Confusions: The angle between the correct answer and the response is a measure of
the change in confusions. The mean angle (μ� ) and the standard deviation (σ� ) of the
angles for one token are expected to decrease if the ears become more accurate in their
response or if they become more consistent in their answers, respectively.

NALR has a significant impact on the standard deviation: a paired t-test results in
α = 0.05 > p = 0.013; in addition, the means of the two conditions are significantly
different (p = 2.0× 10−7). From the scatter plot in Figure 2 (b) one can see that the
variance of the angles (σ� ) goes down with NALR in all but 3 cases: fv (i.e., female
/va/), fp and fg. The mean angle (μ � ) goes down with NALR for all 24 tokens.

K-means clustering

Once normed vector space is defined, the elements in this space may be clustered. For
each of the 24 tokens, there are 2×4×14 = 112 (2 conditions, 4 SNRs and 14 ears)
data points in the fourteen dimensional space. The k-means algorithm is then used to
group the data points into K = 4 clusters, with each cluster represented by its cluster
centroid ck, k = 1, . . . ,K. The cks are then sorted according to their entropy (Eq. 1).

Classifying NALR: By comparing the centroid (ck) assignments of two points of a
subject at a given SNR – representing the two different gain conditions – it is possible
to investigate the impact of NALR. For all tokens, c1 (smallest entropy) represents the
centroid of the points closest to the correct answer. Subjects that go from a higher
entropy cluster (c2,c4,c4) to c1 at a given SNR because of NALR, are considered cases
where NALR worked. These pairs are assigned to the category “Best” (B: cx → c1,
x = 2,3,4). Points that leave c1 because of NALR are cases where NALR failed,
thus categorized as “Worst” ( W: c1 → cy, y = 2,3,4). Pairs of points that stay in
the same cluster are classified as “Neutral” (N: cz → cz, z = 1,2,3,4). The points
that change cluster but do not leave or go to c1 are either classified as “Improved” (I)
or “Degraded” (D) depending on whether they changed to a lower or higher entropy
cluster (I: cx → cy and D: cy → cx, x < y).

In the k-means analysis, listeners’ responses are not collapsed over SNR, but they are
grouped according to proximity in the vector space. Restricting to K = 4 clusters helps
to come to statistically more meaningful results. If the responses of the same listener
at the same SNR in the two experiments differ only a little, they will be grouped into
the same cluster and insignificant changes are thus eliminated. When examining all
1568 cases (4× 14× 24 = 1344), one can see that 191 cases (14.2%) fall into the
“B” category and that in 76 cases (5.68%), NALR failed (“W” category). The “N”
category contains 68.7% of the cases, “I” 9.2%, and “D” 2.3%.
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Token List Conf (+ /A/) NALR Ears /8 P̄e (%)
/16 FG NALR FG NALR

f109gA 14 /d, v, b, f/ ↓ ˆ 0 0 46.9 36.1
m112bA 13 /v, f, p/ ↓ 3 0 41.5 28.5
f101bA 13 /d, g, v/ ↓ 3 1 37.9 35.9
f103mA 12 /v, n/ ↑ ↓ 2 2 26.7 18.8
f106zA 10 /Z, v/ = 3 3 34.4 28
f109fA 10 /s/ ↓ 1 1 31.4 18.9
m118zA 10 /Z, s/ ↓ 1 2 30.6 11.7
f101nA 10 /m, v/ = 1 1 17.3 5.8
f103kA 9 /t/ ↓ 2 2 26.1 27.6
f103SA 9 /s, z/ ↓ 0 0 9 9.5
f105ZA 8 /z, S, g/ ↑ 2 1 40.1 32.6
f103pA 8 /t, k/ ↓ 1 0 23 20.8
f101vA 7 /m, f/ ↓ 2 1 27.4 20.3
m111gA 7 /d/ ↓ 0 0 21.5 21.4
f103sA 6 /f, Z/ ↓ ˆ 1 3 19.9 12.2
m118pA 6 /t/ ↓ ˆ 3 1 10.9 4.1
m120sA 5 /z/ ↓ 2 0 25.7 37.3
f105dA 4 /t/ ↓ 1 1 9.8 2.3
m111kA 3 /t/ ↓ 1 1 16.3 2.3
m118mA 3 /n/ = 0 0 9.2 2.6
f108tA 3 none ↓ 3 1 8.7 1.6
m112tA 2 none ↓ 2 1 5 1.3
m118SA 2 /Z, z/ ↓ 1 0 4.5 1
m118dA 1 /t/ ↓ 0 0 6.3 0.8

Table 2: The List column shows how many of the 16 ears have enough error
to be taken into account for further analysis. The NALR column shows what
happened to the entropy: ↓ down, ↑ up. The symbol ˆ indicates that NALR
reduced the entropy, yet it still remained high; “=” indicates no significant
change. The Ears column shows how many out of the 8 listeners have ears
that perform differently. P̄e shows the average error.

Comparison to NH subjects

Table 2 shows split up by token (i) how many ears have a sufficient number of errors
in order to be considered significant, (ii) what the main confusions are for both
experiments (are they consistent across ears?), (iii) how the entropy of the listeners
change with NALR and (iv) for how many subjects the two ears are remarkably
different (as measured by angle between the responses), (v) what the average error
is for the token.

For each token it is interesting to know (i) how many ears have a sufficient number of
errors in order to be considered significant, (ii) what the average error is for the token,
(iii) what the main confusions are for both experiments (are they consistent across
ears?), (iv) if the confusions that were made in the NALR experiment were expected
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(same Miller and Nicely confusion groups, expected from the normal-hearing 3DDS
data of the particular token), (v) how the entropy of the listeners change with NALR,
and (vi) for how many subjects the two ears are remarkably different (as measured by
angle between the responses). The results for all 24 tokens are summarized in Table 2.

CONCLUSIONS

Audibility

Despite the uncommon approach of measuring CV confusions at MCL, the data
demonstrates, based on the low entropy in quiet, that audibility was not an issue.
Audibility is not rigorously defined. Given the results of our CV recognition
experiments, we propose the use of entropy as means of defining audibility as opposed
to PTA and LTASS. The following reasons further support this proposal:

1. The LTASS is irrelevant when it comes to CV perception, because CV cues are
found to be bursts or frequency edges (Li, 2010; Li et al., 2012), whereas the
long-time speech spectrum is dominated by vowels.

2. CV perception is binary: the acoustic speech cue either can be heard or cannot
be heard (Singh and Allen, 2012).

3. PTTs do not characterize the audibility of acoustic speech cues as indicated by
the 3DDS method (Li, 2010). PTTs for example are an inadequate predictor
of the audibility of a plosive burst, which can be much more intense than the
LTASS in a critical band over a few centi-seconds (Wright, 2004).

From the reasoning stated above, it follows that a sound with 100% error (H = 0
bit) must be audible. This is plausible since the ear must be listening to some signal
properties, otherwise it would not be so consistent. On the other hand, a listener who
responds randomly across all 14 consonants has Pe = 0.93 and H = 3.8bits, indicating
the listener cannot hear the signal. The average size of the Miller and Nicely (1955)
confusion groups (/p, t, k/; /b, d, g/; /f, T, s, S/; /v, D, z, Z/; /m, n/) is 3, therefore a
response with 3 equally likely responses can be taken as an audibility threshold. The
subject is most likely guessing when confusions outside of a known confusion group
appear. In Fig´. 2 (a) the 2-bit curve representing the audibility threshold is plotted
thicker. Only one point (ear 46R female /gA/) lies above the line, for all the other ears
and tokens audibility can be assumed not to be the problem.

Effects of NALR

NALR generally, decreases the entropy (see NALR column in Table 2, Fig. 3 and also,
the k-means result). This means the responses with NALR, show on average smaller
confusion groups. The ears become more consistent in their responses, based on the
decreasing standard deviation σ� , which means the angles in the 14 dimensional space
between the responses and the correct answer become more similar for all ears. In
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Token List Conf (+ /A/) NALR Ears /8 P̄e (%)
/16 FG NALR FG NALR

f109gA 14 /d, v, b, f/ ↓ ˆ 0 0 46.9 36.1
m112bA 13 /v, f, p/ ↓ 3 0 41.5 28.5
f101bA 13 /d, g, v/ ↓ 3 1 37.9 35.9
f103mA 12 /v, n/ ↑ ↓ 2 2 26.7 18.8
f106zA 10 /Z, v/ = 3 3 34.4 28
f109fA 10 /s/ ↓ 1 1 31.4 18.9
m118zA 10 /Z, s/ ↓ 1 2 30.6 11.7
f101nA 10 /m, v/ = 1 1 17.3 5.8
f103kA 9 /t/ ↓ 2 2 26.1 27.6
f103SA 9 /s, z/ ↓ 0 0 9 9.5
f105ZA 8 /z, S, g/ ↑ 2 1 40.1 32.6
f103pA 8 /t, k/ ↓ 1 0 23 20.8
f101vA 7 /m, f/ ↓ 2 1 27.4 20.3
m111gA 7 /d/ ↓ 0 0 21.5 21.4
f103sA 6 /f, Z/ ↓ ˆ 1 3 19.9 12.2
m118pA 6 /t/ ↓ ˆ 3 1 10.9 4.1
m120sA 5 /z/ ↓ 2 0 25.7 37.3
f105dA 4 /t/ ↓ 1 1 9.8 2.3
m111kA 3 /t/ ↓ 1 1 16.3 2.3
m118mA 3 /n/ = 0 0 9.2 2.6
f108tA 3 none ↓ 3 1 8.7 1.6
m112tA 2 none ↓ 2 1 5 1.3
m118SA 2 /Z, z/ ↓ 1 0 4.5 1
m118dA 1 /t/ ↓ 0 0 6.3 0.8

Table 2: The List column shows how many of the 16 ears have enough error
to be taken into account for further analysis. The NALR column shows what
happened to the entropy: ↓ down, ↑ up. The symbol ˆ indicates that NALR
reduced the entropy, yet it still remained high; “=” indicates no significant
change. The Ears column shows how many out of the 8 listeners have ears
that perform differently. P̄e shows the average error.

Comparison to NH subjects

Table 2 shows split up by token (i) how many ears have a sufficient number of errors
in order to be considered significant, (ii) what the main confusions are for both
experiments (are they consistent across ears?), (iii) how the entropy of the listeners
change with NALR and (iv) for how many subjects the two ears are remarkably
different (as measured by angle between the responses), (v) what the average error
is for the token.

For each token it is interesting to know (i) how many ears have a sufficient number of
errors in order to be considered significant, (ii) what the average error is for the token,
(iii) what the main confusions are for both experiments (are they consistent across
ears?), (iv) if the confusions that were made in the NALR experiment were expected
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the 3DDS method (Li, 2010). PTTs for example are an inadequate predictor
of the audibility of a plosive burst, which can be much more intense than the
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responds randomly across all 14 consonants has Pe = 0.93 and H = 3.8bits, indicating
the listener cannot hear the signal. The average size of the Miller and Nicely (1955)
confusion groups (/p, t, k/; /b, d, g/; /f, T, s, S/; /v, D, z, Z/; /m, n/) is 3, therefore a
response with 3 equally likely responses can be taken as an audibility threshold. The
subject is most likely guessing when confusions outside of a known confusion group
appear. In Fig´. 2 (a) the 2-bit curve representing the audibility threshold is plotted
thicker. Only one point (ear 46R female /gA/) lies above the line, for all the other ears
and tokens audibility can be assumed not to be the problem.

Effects of NALR

NALR generally, decreases the entropy (see NALR column in Table 2, Fig. 3 and also,
the k-means result). This means the responses with NALR, show on average smaller
confusion groups. The ears become more consistent in their responses, based on the
decreasing standard deviation σ� , which means the angles in the 14 dimensional space
between the responses and the correct answer become more similar for all ears. In
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addition, the responses become closer to the correct answer, since the mean angle (μ � )
of all ears per token decreases with NALR. Therefore, NALR not only decreases the
randomness of the answers but also causes the ears to agree more on a token basis.
This gives hope for training of listeners with their specific problems, since they all
seem to agree on the signal they hear. Given the presented data, we have demonstrated
the effectiveness of NALR using a speech test instead of pure tone tests. This suggests
that a carefully constructed speech test can be used as a diagnostic tool: From the
results listed in Table 2, we know all listeners for whom CV tokens cause problems and
therefore can get detailed information about their hearing loss. Carefully characterized
CVs can be used to find specific problems in HI subjects, that PTTs cannot.
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Auditory training programs are currently being explored as a method of
improving hearing-impaired (HI) speech perception; precise knowledge of
a patient’s individual differences in speech perception allows one to more
accurately diagnose how a training program should be implemented. Re-
mapping or variations in the weighting of acoustic cues, due to auditory
plasticity, can be examined with the detailed confusion analyses that we
have developed at UIUC. We show an analysis of the responses of 17 ears
with sensorineural hearing loss to consonant-vowel stimuli, composed of 14
English consonants followed by the vowel /A/, presented in quiet and speech-
shaped noise. Although the tested tokens are noise-robust and unambiguous
for normal-hearing listeners, the subtle natural variations in signal properties
can lead to systematic differences for HI listeners. Specifically, our recent
findings have shown token-dependent individual variability in error and
confusion groups for HI listeners. A clustering analysis of the confusion data
shows that HI listeners fall into specific groups. Many of the token-dependent
confusions that define these groups can also be observed for normal-hearing
listeners, under higher noise levels or filtering conditions. These HI-listener
groups correspond to different acoustic-cue weighting schemes, highlighting
where auditory training should be most effective.

INTRODUCTION

One of the primary goals of auditory training techniques is improving the consonant
recognition of listeners with sensorineural hearing loss. Training has been shown to
be effective treatment in terms of both consonant and word recognition; the work of
Boothroyd and Nittrouer (1988) and Bronkhorst et al. (1993) generalizes these results
by demonstrating how the perception of individual phones and low-context syllables
predicts the perception of words and sentences. Although significant improvements
can be observed from both analytic and synthetic training (Sweetow and Palmer,
2005), the effects are difficult to measure and are most easily observed for listeners
with the most pre-training recognition error (Walden et al., 1981). Analysis of the
effects of training tends to focus on discrimination ability and overall error; the effects
on consonant confusions would provide an additional dimension to the analysis, often
without the collection of additional data.

In general, auditory training methodologies do not focus on the listener-specific
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