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In the hearing-aids community, machine-learning technology enjoys a repu-
tation as a potential performance booster for signal-processing issues such as
environmental steering, personalization, algorithm optimization, and speech
detection. In particular in the area of in situ hearing aid personalization,
the promise is steep but clear success stories are still hard to come by.
In this contribution, we analyze the ‘personalizability’ of typical hearing-
aid signal-processing circuits. We discuss a few salient properties of a
very successful adaptable and personalized signal-processing system, namely
the brain, and we discover that among some other issues, the lack of a
probabilistic framework for hearing-aid algorithms hinders interaction with
machine-learning techniques. Finally, the discussion leads to a set of
challenges for the hearing-aid research community in the quest towards in
situ personalizable hearing aids.

INTRODUCTION

In this paper, we distinguish three groups of hearing-aid (HA) algorithm designers. By
a designer we mean any entity that is capable to affect the input-output behavior of an
HA algorithm. The first designer group entails the professionals: engineers, scientists,
and dispensing audiologists. The professionals deal with ex situ design. Roughly
speaking, engineers and scientists define the algorithm structure (i.e., the equations),
whereas audiologists set the HA algorithm parameters during a fitting session. After
a patient has been fitted and he walks away with an operational hearing aid, there
still remain two entities that are capable of changing the HA algorithm under in situ
conditions. The second designer group is the patient himself who can update an HA
algorithm through (machine-learning-based processing of) preference feedback. For
instance, patient feedback, collected through a volume-control wheel, could be used
to change some gain parameters of the hearing aid. Finally, the acoustic environment
could in principle be recruited to change parameters or structure of the HA algorithm.
With a sample rate of 16 kHz and a 16-bit code per sample, about one million bits of
acoustic data get recorded every four seconds by the hearing aid. One could imagine
that machine-learning methods take advantage of these in situ acquired acoustic data
streams, e.g., to train an environmental classifier.

In general, the field of machine learning refers to methods that aim to improve the
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Fig. 1: Percentages of patient satisfaction with sound processing in hearing
aids. Figure from Kochkin et al. (2010).

performance of a device through (learning from) experience with that device. In the
hearing-aid context, in situ updates of the algorithm by patient preference feedback
or by the acoustic environment could be considered machine-learning-based design.
Today, HA design is almost exclusively the domain of the professionals. Why has in
situ machine-learning-based design not yet claimed a substantial role in the HA design
process? In this paper we will discuss some fundamental signal-processing issues that
hinder application of machine-learning-based design to HA algorithms.

WHY IN SITU MACHINE LEARNING?

How satisfied are users of hearing aids? The graph in Fig. 1 is from a large study
in 2010 on the hearing-aids market by Kochkin et al. (2010). The horizontal bars
represent patient satisfaction rates with various aspects of sound processing in hearing
aids. The bars on the left reflects the percentage of people that are happy, dark grey
(right) indicates dissatisfaction, and light grey (middle) relates to a neutral opinion.
Let’s keep this simple: about 20% of hearing-aid patients are not happy with the
sound processing performance of their devices.

This is a remarkable number because over the past decade, we, the engineers and
scientists in the hearing-aids industry and in academic environments, have collectively
spent a few thousand man-years on improving the sound processing in hearing aids.
Apparently, despite a very extensive collective engineering effort, one out of five
patients remains not satisfied. The performance of sound processing in hearing aids
seems to have plateaued.

There is a plausible explanation for this observation. When an engineer designs a
hearing aid, he does not know yet who the patient will be, he doesn’t know the hearing-
loss portrait of that patient, nor does he know in which acoustic environments the
patient will spend his time. To complicate matters, this type of knowledge changes
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Fig. 2: Block diagram of the AYRE-SA3291 hearing-aid algorithm, ON-
Semiconductor (2013).

over time. Every time a patient puts in his hearing aid, the physical placement of the
device will be a bit different from last time, leading to an altered acoustical situation
in and around the ear. In other words, when the engineer designs the sound-processing
properties of a hearing aid, he has to deal with many unknowns about the actual
circumstances where the hearing aid will be used. It won’t help to ask the engineer to
work harder or do his extra very best this time, since these future in situ conditions are
simply unknown. Instead, we must provide the patient will tools to solve problems
right there when they occur on the spot.

In order to get an idea of what we are up against, have a look at Fig. 2, which is a block
diagram of a commercial hearing-aid algorithm by ON-Semiconductor (2013). We use
this particular block diagram because it is publicly available but the discussion applies
generally to the signal-processing algorithms of commercially available hearing aids.
Most blocks in this graph hide sub-algorithms that are at least as complex as this top-
level diagram. Now suppose that you are at a cocktail party and you can’t understand
your conversation partner. You would like to make a small change to this circuit and
test a few variants, but how? If you pull a wire, this circuit will likely crash and no
output get generated. Which wire should you pull anyway? Or should you add a
wire somewhere? In order words, how do you bring about variation as a means for
experimentation in this system? Even if you succeed in improving the quality for
your current situation, will that change still be an improvement later, after the party
is over? In practice, the way to update systems like this one is to give it to an expert
signal-processing engineer and let him tinker with it; then take it back after a few
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Fig. 1: Percentages of patient satisfaction with sound processing in hearing
aids. Figure from Kochkin et al. (2010).
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over time. Every time a patient puts in his hearing aid, the physical placement of the
device will be a bit different from last time, leading to an altered acoustical situation
in and around the ear. In other words, when the engineer designs the sound-processing
properties of a hearing aid, he has to deal with many unknowns about the actual
circumstances where the hearing aid will be used. It won’t help to ask the engineer to
work harder or do his extra very best this time, since these future in situ conditions are
simply unknown. Instead, we must provide the patient will tools to solve problems
right there when they occur on the spot.

In order to get an idea of what we are up against, have a look at Fig. 2, which is a block
diagram of a commercial hearing-aid algorithm by ON-Semiconductor (2013). We use
this particular block diagram because it is publicly available but the discussion applies
generally to the signal-processing algorithms of commercially available hearing aids.
Most blocks in this graph hide sub-algorithms that are at least as complex as this top-
level diagram. Now suppose that you are at a cocktail party and you can’t understand
your conversation partner. You would like to make a small change to this circuit and
test a few variants, but how? If you pull a wire, this circuit will likely crash and no
output get generated. Which wire should you pull anyway? Or should you add a
wire somewhere? In order words, how do you bring about variation as a means for
experimentation in this system? Even if you succeed in improving the quality for
your current situation, will that change still be an improvement later, after the party
is over? In practice, the way to update systems like this one is to give it to an expert
signal-processing engineer and let him tinker with it; then take it back after a few
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months and hope that it works better. But that’s not what we are interested in here.
If this system doesn’t work to your full satisfaction in the field, you might be willing
to invest maximally one minute to make it sound better. And it should sound better
because if it doesn’t, you will be less willing to spend that minute the next time. This
signal processing circuit is not fit for that purpose.

Based on the foregoing discussion, let us state an important challenge for the HA
industry. How can we build tools that facilitate fast and easy (machine-learning-
based) re-design of hearing-aid algorithms driven by end users and the environment.
There are three very challenging aspects about this goal. Whereas a normal design
update by a signal-processing expert in his laboratory environment may take a few
months, in this challenge the aim is to execute an incremental design update (1) by a
(non-expert) user, (2) under normal operational conditions, and (3) within a minute. In
search for answers, we are inspired by research from others on how the brain processes
information. In this paper we will discuss some aspects of computation in brains
that in our opinion should influence the future engineering practice of HA algorithm
design. However, before we turn to the brain, let us discuss an important engineering
lesson for the design of systems with large uncertainties.

DESIGN FOR REDESIGN – THE FLIGHT OF THE GOSSAMER CONDOR

In 1959, the British industrialist Henry Kremer announced a prize of £50,000 (in
today’s money worth about 1 million euros) for the first successful human-powered
flight around a figure-eight course with the two turning points placed half a mile apart.
A second prize of £100,000 was created for the first human-powered flight across the
English channel.

Many years and 50 failed attempts passed. In 1977, the British aviation engineer Paul
MacCready took on the challenge and noticed a common pattern when he studied the
records of past attempts. Previous engineering teams had often invested more than a

Fig. 3: The Gossamer Albatross, the first human-powered airplane that
crossed the English channel. Figure from Raskin (2011).
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year to carefully design a prototype plane based on elaborate theories and conjecture.
Then, a few seconds after take-off of the maiden flight, a year’s work would crash on
the ground and obliterate the massive effort.

MacCready came to a crucial insight. The past efforts were focused on solving the
wrong problem. The essential problem was not how to design a human-powered
airplane. Instead, the essential problem was that they did not understand the problem
(Raskin, 2011). Rather than attempting to design an optimal aircraft, MacCready
reformulated the problem as the quest to design an airplane that could be re-built in
hours, not months. His team started building planes from cheap and light aluminum
tubing, mylar, wires, and scotch tape. In MacCready’s approach, design was to be
interpreted as an experiment to learn more about the problem. The first flight failed
right away. But the team learned from the crash and delivered a second prototype
just a few hours later. This process of fast iterative redesign continued for about half
a year until 23 August 1977, when Bryan Allen of MacCready’s team pedaled the
Gossamer Condor for the 223rd time and cleared the finish line 7 minutes and 27
seconds after take-off. Two years later, Allen flew a further evolution of the Gossamer
(the ‘Albatross’) across the English channel to claim the second Kremer prize, cf.
Fig. 3.

Where other teams had failed for more than 17 years, MacCready’s fast-iterations
approach turned out to be the key to solving poorly-understood engineering problems.
While this story has on the surface little to do with hearing-aid design, the underlying
challenge to cope with a poorly-understood problem is the same for both tasks. This
story illuminates the engineering need to focus on fast redesign of hearing-aid sound-
processing algorithms, instead of a research focus on the optimal algorithm per se.

INFORMATION PROCESSING AND THE BRAIN

Engineers study the brain for its usability to design artificial systems. Since the brain
is our most crucial instrument in our drive to survive, it must work today and yet be
fully prepared to adapt to unforeseen new circumstances. In the next sections we will
discuss a few salient properties that enable the brain to execute fast redesign iterations
so as to cope with a world where the problems keep changing in unpredictable ways.

Probability theory

If the brain is a system that processes information then there must be some computing
rules that the brain adheres to. There is strong scientific support for the claim that
brains compute with the rules of probability theory (e.g., Friston, 2009). This is the
same probability theory that we all got to love and hate in high school.

We can use probability theory to predict the future, based on observations from the
past. For instance, if we observe 100 coin tosses and 96 out of 100 throws came
up tails, then we predict that the 101st observation will come up tails with higher
probability than for heads. Intuitively this happens by extrapolating past observations.
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is our most crucial instrument in our drive to survive, it must work today and yet be
fully prepared to adapt to unforeseen new circumstances. In the next sections we will
discuss a few salient properties that enable the brain to execute fast redesign iterations
so as to cope with a world where the problems keep changing in unpredictable ways.
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If the brain is a system that processes information then there must be some computing
rules that the brain adheres to. There is strong scientific support for the claim that
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Technically, in order to predict the future we need to build a model to summarize
regularities that were present in past observations and use that model to predict the
future. We humans need to have some capacity to predict the future, because we want
to avoid to be surprised by the physical world around us. For instance, we must be
able to make predictions on what’s edible or hostile to us. More generally, any large
surprise in the physical world could possibly kill us. So, a key task of the brain is to
build a model for the world in which we live and use that model to make predictions
about that world.

Probability theory can be used to make optimal predictions about future (data)
observations by

Pr( future |data)︸ ︷︷ ︸
data-based prediction of future

= ∑
all models

Pr( future | model)︸ ︷︷ ︸
model-based prediction of future

× Pr( model |data)︸ ︷︷ ︸
model based on past observations

(Eq. 1)

The expression Pr(.) here is mathematical notation for a probability mass function,
but we will not bother with explaining the details of the formula, other than to point
out that something as complex as predicting the future can be captured by a single-line
equation. The left-hand side states that we want to predict the future from past data.
The data refer to observations from the outside world that enter the brain through
sensory organs like the eyes or ears. The right-hand side states how predictions of
data relate to a model and past observations. The model can be implemented by a
brain or by a computer program. The right-most factor, Pr( model |data), captures
what the model has learned from past data. By another rather simple manipulation
with probability theory we can express how models learn from data:

Pr( model |data)︸ ︷︷ ︸
model after learning

=

model based predictions︷ ︸︸ ︷
Pr(data | model) ×

model before learning︷ ︸︸ ︷
Pr( model)

Pr(data)︸ ︷︷ ︸
evidence

(Eq. 2)

In probability theory this equation is known as Bayes rule. Bayes rule describes how
we learn about the world. It doesn’t matter if the observations relate to music, video, or
even financial stock rates: Bayes rule applies and tells us how to optimally update our
knowledge about a phenomenon based on new observations about that phenomenon.
Bayes rule is basically a prediction-correction method. The model gets updated on the
basis of differences between actual and (synthesized) predicted observations.

If a human brain were capable of executing Bayes rule, then our concept of what a tree
looks like would get updated every time when we see a tree. The more trees we see,
the better we understand what a tree looks like. It seems that it would be very useful
for a brain to be able to process sensory information by Bayes rule, because it would
enable us to learn a model about the world just by looking at the world. Apparently,
using the same rules from probability theory we can then use that model to make
predictions about the world, which are so crucial for us to stay alive.
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It can be shown that, under some very agreeable assumptions, Bayes rule prescribes
the optimal method for learning from observations (Jaynes, 2003). So there is no
need to look for a specialized learning algorithm that works particularly well for any
specific problem. The simplicity of Bayes rule is a strength. Whether we have to
learn a language or learn about how to repair a bicycle, Bayes rule is how we should
learn. If the brain computes with probability theory then there is no need to invent new
prediction or detection methods when the outside world changes. It doesn’t matter if
the observed signals are of acoustic or visual nature, the difficulty lies mostly in how
to implement Bayes rule, both in brains and computers.

The probabilities that we discussed relate data to models and back. Models and data
are very much the core issues for engineered signal-processing systems. Next we take
a look at how the brain deals with models from the perspective of adaptability.

Models and structures

Signal-processing algorithms can be intuitively visualized by block diagrams like in
Fig. 2. A block diagram consists of a set of blocks (nodes) and links (edges) that
connect the blocks. With each link we associate a variable in the system. In a block,
mathematical relations between the connected variables are described. Often, we may
find another block diagram in a block, so blocks can be used to hide details of the
algorithm. The algorithm structure refers to the mathematical relations between the
variables that are described by a block diagram. We also like to distinguish between
variables whose values change as time moves on (the state variables) and those (the
parameters) whose values are expected to stay fixed or change much slower than the
rate of change of the states. In neural terms, the structure relates to the neuronal
network of the brain, the parameters are represented by the strength of synaptic
connections between neurons, and the state relates to the electric fields in the brain.
In particular, our perception of the world is represented by the state variables. The
model structure and parameter values provide constraints on how the states (read:
our perception) will change over time. If our perceptions and prediction of future
perceptions are accurate enough, we can stay alive.

Unfortunately, unexpected things will happen and we will need to change the
algorithm structure and parameter values so as to keep our model of the world
sufficiently accurate.

It is clear that if we change a structure at one location, we do not want that change
to have serious consequences on variables in another location of the network. If the
network were now to be adapted at the latter location, this could have effects elsewhere
again and thus lead to a snowball effect of unpredictable changes, likely followed by a
crash of the algorithm. Therefore, modularity is an essential characteristic of complex
yet adaptable networks. A modular network is composed of sub-networks called
modules with more dependencies within the modules than between the modules. The
relative independence of modules prevents the snowball effect of changes to escalate.
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to avoid to be surprised by the physical world around us. For instance, we must be
able to make predictions on what’s edible or hostile to us. More generally, any large
surprise in the physical world could possibly kill us. So, a key task of the brain is to
build a model for the world in which we live and use that model to make predictions
about that world.

Probability theory can be used to make optimal predictions about future (data)
observations by

Pr( future |data)︸ ︷︷ ︸
data-based prediction of future

= ∑
all models

Pr( future | model)︸ ︷︷ ︸
model-based prediction of future

× Pr( model |data)︸ ︷︷ ︸
model based on past observations

(Eq. 1)

The expression Pr(.) here is mathematical notation for a probability mass function,
but we will not bother with explaining the details of the formula, other than to point
out that something as complex as predicting the future can be captured by a single-line
equation. The left-hand side states that we want to predict the future from past data.
The data refer to observations from the outside world that enter the brain through
sensory organs like the eyes or ears. The right-hand side states how predictions of
data relate to a model and past observations. The model can be implemented by a
brain or by a computer program. The right-most factor, Pr( model |data), captures
what the model has learned from past data. By another rather simple manipulation
with probability theory we can express how models learn from data:

Pr( model |data)︸ ︷︷ ︸
model after learning

=

model based predictions︷ ︸︸ ︷
Pr(data | model) ×

model before learning︷ ︸︸ ︷
Pr( model)

Pr(data)︸ ︷︷ ︸
evidence

(Eq. 2)

In probability theory this equation is known as Bayes rule. Bayes rule describes how
we learn about the world. It doesn’t matter if the observations relate to music, video, or
even financial stock rates: Bayes rule applies and tells us how to optimally update our
knowledge about a phenomenon based on new observations about that phenomenon.
Bayes rule is basically a prediction-correction method. The model gets updated on the
basis of differences between actual and (synthesized) predicted observations.

If a human brain were capable of executing Bayes rule, then our concept of what a tree
looks like would get updated every time when we see a tree. The more trees we see,
the better we understand what a tree looks like. It seems that it would be very useful
for a brain to be able to process sensory information by Bayes rule, because it would
enable us to learn a model about the world just by looking at the world. Apparently,
using the same rules from probability theory we can then use that model to make
predictions about the world, which are so crucial for us to stay alive.
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It can be shown that, under some very agreeable assumptions, Bayes rule prescribes
the optimal method for learning from observations (Jaynes, 2003). So there is no
need to look for a specialized learning algorithm that works particularly well for any
specific problem. The simplicity of Bayes rule is a strength. Whether we have to
learn a language or learn about how to repair a bicycle, Bayes rule is how we should
learn. If the brain computes with probability theory then there is no need to invent new
prediction or detection methods when the outside world changes. It doesn’t matter if
the observed signals are of acoustic or visual nature, the difficulty lies mostly in how
to implement Bayes rule, both in brains and computers.

The probabilities that we discussed relate data to models and back. Models and data
are very much the core issues for engineered signal-processing systems. Next we take
a look at how the brain deals with models from the perspective of adaptability.

Models and structures

Signal-processing algorithms can be intuitively visualized by block diagrams like in
Fig. 2. A block diagram consists of a set of blocks (nodes) and links (edges) that
connect the blocks. With each link we associate a variable in the system. In a block,
mathematical relations between the connected variables are described. Often, we may
find another block diagram in a block, so blocks can be used to hide details of the
algorithm. The algorithm structure refers to the mathematical relations between the
variables that are described by a block diagram. We also like to distinguish between
variables whose values change as time moves on (the state variables) and those (the
parameters) whose values are expected to stay fixed or change much slower than the
rate of change of the states. In neural terms, the structure relates to the neuronal
network of the brain, the parameters are represented by the strength of synaptic
connections between neurons, and the state relates to the electric fields in the brain.
In particular, our perception of the world is represented by the state variables. The
model structure and parameter values provide constraints on how the states (read:
our perception) will change over time. If our perceptions and prediction of future
perceptions are accurate enough, we can stay alive.

Unfortunately, unexpected things will happen and we will need to change the
algorithm structure and parameter values so as to keep our model of the world
sufficiently accurate.

It is clear that if we change a structure at one location, we do not want that change
to have serious consequences on variables in another location of the network. If the
network were now to be adapted at the latter location, this could have effects elsewhere
again and thus lead to a snowball effect of unpredictable changes, likely followed by a
crash of the algorithm. Therefore, modularity is an essential characteristic of complex
yet adaptable networks. A modular network is composed of sub-networks called
modules with more dependencies within the modules than between the modules. The
relative independence of modules prevents the snowball effect of changes to escalate.
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Fig. 4: An example flow graph of hierarchical modularity across three cortical
regions. Figure from Friston (2009).

On the other hand, some communication between modules is necessary to generate
behavior that transcends the functional complexity of individual modules. In order to
avoid the snowball effect, modules should preferably depend on other modules that
are more stable than themselves. Let’s assume the opposite, namely that module A
depends on module B and the natural rate of change for B is faster than for A. In that
case, A will have to adapt each time that B changes, which is more often than A’s
natural rate of change. The idea that the snowball-of-changes effect can be avoided by
constraining intermodule communication to flow from more to less stable structures
leads to hierarchical networks.

Technically, probability theory supports hierarchical modularity almost effortlessly.
Bayes rule decomposes into a hierarchy of four modules by

Pr( model |data) ∝ Pr(data | model)×Pr( model) = (Eq. 3)
Pr(data |states , parameters , structure) (now)

× Pr(states |parameters , structure) (short-term memory)
× Pr(parameters |structure) (mid-term)
× Pr(structure) (long-term)

In the final result of the computation, the left-hand side Pr( model |data), the model
depends directly on fast fluctuations in the observed data. Straight implementation
leads to an undesired network structure. However, after the hierarchical decomposi-
tion, at each level, variables only depend on other variables that are more stable than
themselves. We now have an answer to our question on how to implement Bayes
rule. Through hierarchical modularity the snowball effect of changes is avoided. This
property is crucial when in situ structural algorithm changes are demanded.

We can think of many reasons why modularity is the most prominent feature of
adaptable systems. But how would the brain know that? Is there an evolutionary
drive for brains to develop modular structures? If we accept that the brain is mostly
an engine for probabilistic reasoning, then it would help if probability theory would
prefer modular over densely coupled structures (all else being equal). This is indeed
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the case. The factor Pr(data) in Bayes rule, known as the evidence, can be used to
evaluate how well a model summarizes a set of observations. It can be mathematically
shown that the (logarithm of the) evidence decomposes into a sum of two terms,
namely accuracy plus model simplicity:

log(evidence) = accuracy + simplicity (Eq. 4)
≈ ‘works today’+ ‘works tomorrow’

The first term, accuracy, measures how well the model predicts past observations.
If we need to predict future observations, it makes sense that we prefer models that
performed best on past data, so we want models with high accuracy. A system that
scores high at accuracy works well today. However, the second term, the simplicity
term, favors models that are simple and adaptable. Indeed, it can be shown that
modular structures score higher simplicity values than densely coupled systems. As
we discussed, modular systems are more adaptable than coupled systems. Therefore,
probability theory prefers structures that balance excellent performance today (high
accuracy) against adaptability for tomorrow (high simplicity). We also conclude that
if brains would follow probability theory, then it’s no surprise that brains are both
excellent performers today and yet remain very adaptable. After all, both properties
are highly prioritized by straight probability theory. The brain has no choice but to
optimize both for today and an unknown future.

Driven by data

We discussed how probabilities and models relate to information processing in the
brain. The third term in the equations for learning and prediction is called the data or
observations.

Data are observed through sight, hearing, taste, smell, and touch, collectively known
as our senses. Observations inform us about the current state of the world around us.
We use probability theory to summarize observations in models and use these models
to predict how the world evolves.

One of the most interesting aspects of our brain is how much we seem to learn from
just a few teaching events. After a mother has showed her two-year old daughter a few
times what a tree looks like, the girl is able to identify new trees that she has not seen
before and also to discriminate trees from other plants in general. Considering the
various shapes, sizes, and colors that apply to trees, it would be impossible for a child
to learn to reliably recognize trees from just a few remarks by her mother. Instead,
a child learns what trees look like through building models straight from incoming
visual data. There is no teacher involved here. The interaction with her mother just
added a label (‘tree’) to the concept of a tree that had already been acquired through
modeling the world in an unconscious fashion. In the machine-learning field, learning
without a teacher is called ‘unsupervised learning’.

The human cortex holds about 1014 configurable synapses, which can be considered
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Fig. 4: An example flow graph of hierarchical modularity across three cortical
regions. Figure from Friston (2009).
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Fig. 5: Data rates for the senses relative to bandwidth of computer networks
(McCandles, 2010).

parameters of the brain. We live about 109 seconds, so on average there is room to
train about 100,000 synapses every second. Indeed, brains receive a massive amount
of data through the senses, for instance the retina sends more than 10 million bits of
data to the brain every second. The role of teachers, parents, books, and other sources
of abstract information is mostly to help us sort out which parts of these incoming
data streams are important or should be ignored. In other words, teachers help us to
select and label data streams that are used to train a model of the world. Crucially, in
order to cope with a world where the settings and problems keep changing, a massive
amount of unsupervised learning must always be going on.

In Fig. 5, data visualization artist Dave McCandles, based on work by the Danish
science writer Tor Nørretranders, graphically displayed the amount of information that
the different senses pass on to the brain in comparison to the bandwidth of computer
networks (McCandles, 2010). Clearly, vision is the dominant sense. The white
box in the lower-right corner represents the amount of data (0.7%) that is processed
consciously in relation to the colored planes that refer to unconscious processing.
Apparently, almost all incoming data is processed unconsciously. Building models
of the world, including creating a model for what a tree looks like, is mostly an
unconscious process.

Summary of information processing in the brain

In order to adapt to unforeseen changing conditions, brains need to iterate quickly
through new model proposals for explaining the world. In the past three sections on
information processing in the brain, we found three crucial ingredients for iterating
quickly though signal processing system proposals. The first ingredient concerns
probability theory as a foundational calculus. Probability theory prescribes how to
learn and predict in a world where noise obscures the signals, where observations
are scarce and where people’s preferences change. The second principle relates
to hierarchical modularity. In order to discover better algorithms, we need to test
alternatives to existing algorithms and at the same time remain operational. We
can only introduce a change to an existing algorithm if the effect of the change
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does not cause other parts of the algorithm to crash. We must survive the change
and modularity is a crucial structural element so as to limit the impact of changes
throughout the algorithm. Finally, when talking about the data we noted that the
structure of real world data is so rich and volatile that we cannot rely on teachers,
parents, scientists, and engineers to design and update the algorithm. Surviving in the
real world implies a massive amount of unsupervised learning, which is always going
on in the background. In engineering terms, continuous calibration is essential.

HEARING-AID SYSTEMS THAT WORK TODAY AND TOMORROW

Most of this paper has been dedicated to a review of data processing in the brain. Let
us now get back to the engineering practice. We left this topic about half an hour ago
when we were stuck with a block diagram of a hearing-aid algorithm. You were at a
party and did not understand your conversation partner. You then wanted to test some
variants of the hearing- aid algorithm right there when the problem occurred, but the
system looked so complicated that any ideas on how to change the circuit were hard
to come by. Our feeling was that if you would change anything, the algorithm would
probably crash.

But let us assume that you have managed the dependencies between modules in such
a way that you have enough confidence that a small change will not kill the algorithm.
Then you can introduce some small changes to the hearing-aid algorithm and with a
bit of luck you can improve your listening experience at the party. The next question
is now whether the hearing aid should stick to this new configuration after you have
left the party. You gave the hearing aid some new information, namely you showed
the hearing aid how to behave when you are at a cocktail party. How relevant was that
information for other acoustic environments? When the party is over, and you are in
your car driving home, the hearing aid has two possible algorithms to choose from:
the one that you came to the party with and the other algorithm that you preferred
while the party was alive. Since you don’t want to keep fiddling with your hearing aid
every time when something changes in the acoustic environment, we want the hearing
aid to decide for you.

In order to answer this question, the hearing aid would have to consider what features
of the cocktail-party environment were so favorable for the second rather than the first
algorithm and it would have to consider if or how much of these features remain active
in the current car environment. In other words, the hearing aid should have access to a
model of the acoustic world and it should be capable to answer what-if questions based
on information that is preserved by the model. The hearing aid should have built such a
world model by unsupervised training on past acoustic observations. In principle, this
seems possible since a hearing-aid microphone records one million bits of acoustic
data every four seconds. This continuous data stream should be summarized by a
hierarchically organized structure, which is a necessary ingredient for the model to
stay changeable, so it can adapt as new data get recorded. We have also discussed that
the model should practice Bayesian reasoning in order to assess how much to adapt.
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Fig. 5: Data rates for the senses relative to bandwidth of computer networks
(McCandles, 2010).
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131



Bert de Vries and Andrew Dittberner

Unfortunately, these necessary ingredients for in situ learning are not part of today’s
HA signal-processing algorithms. As a result, rational adaptation of HA algorithms
based on in situ acquired evidence is limited today. In our opinion, the key hearing-
aid signal-processing challenge for the next decade will be to absorb the discussed
additional features into our algorithms.

DISCUSSION

In this paper, we have taken a high-level perspective on the design and in situ re-
design of hearing-aid algorithms. We have tried to make an argument for why fast
in situ re-design of HA algorithms is crucial if we want to break through the 20%
barrier of unsatisfied end users. Wireless links to remote control devices and fancy
user interfaces lead to impressive products, but in the end all patient interactions
should result in rational algorithm updates based on the evidence. As it turns out,
while today’s hearing-aid algorithms keep roughly 80% of end users satisfied, they
are not suited for fast in situ experimentation and adaptation in case the patient is not
happy. We then identified three salient properties of a very successful adaptable and
personalized signal-processing system, namely the brain, that are absent in today’s
HA signal-processing structures. Specifically we discussed (1) learning through strict
application of probability theory, (2) a hierarchically modular algorithm structure,
and (3) continuous calibration. The absence of these properties hinder machine-
learning-based re-design of today’s HA algorithms. On the other hand, an emerging
trend of cross-fertilization of ideas between the computational neuroscience, machine-
learning, and signal-processing communities should make us mildly optimistic that
significant progress towards in situ HA design can be achieved over the next decade.
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Hornickel et al. (2009) and Skoe et al. (2011) measured and analyzed
brainstem responses (ABRs) in response to the synthetic syllables /ba/,
/da/ and /ga/, in normal and learning-impaired children. They reported
a co-variation between the differences in average phase lag between the
three syllable-evoked responses (called average phase-shifts), and speech-
intelligibility performance (used as a predictor for learning-impairment). It
was argued that, due to the reported normal peripheral hearing of both groups,
the co-variation was evidence for neural differences in the brainstem, likely
related to brainstem plasticity. They suggested brainstem functionality can be
influenced by cortical structures to increase the difference between syllable
responses. This study developed an ABR model capable of simulating ABRs
to a variety of stimuli. The model was used to investigate whether the
state of the peripheral hearing could be another possible explanation for the
decreased average phase shifts observed for the learning-impaired children.
Specifically, by changing the cochlear tuning of the model and evaluating the
simulations based on models with broad versus sharp tuning (yet keeping all
tuning estimates within normal audiometrical and wave-V latency range), it
was observed that broader tuning systematically lead to smaller phase-shifts
between the syllable-evoked ABRs.

INTRODUCTION

Auditory evoked potentials (AEP) have been used to assess the neural encoding
of sound both for clinical and research purposes. Most studies have focused on
the auditory brainstem response (ABR) as they are less affected by attention and
sleep than potentials with origin at higher neural stages. The ABR has also been
observed to be unaffected by training. However, a number studies have recently
investigated and found evidence of plasticity1 of the complex ABR (cABR), both

1physiological changes of the nervous system due to, e.g., learning
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