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Sound recognition is likely to initiate early in auditory processing and
use stored representations (spectrotemporal templates) to compare against
spectral information from auditory brainstem responses over time. A com-
putational model of sound recognition is developed using neurobiologically
plausible operations. The adaptability and number of templates required
for the computational model to correctly recognize 10 Klatt-synthesized
vowels is determined to be around 1250 templates when trained with random
fundamental frequencies from the male pitch range and randomized variation
of the first three formants of each vowel. To investigate the ability to adapt
to noise and other unheard vowel utterances, test sets with 1000 randomly
generated Klatt vowels in babble at signal-to-noise ratios (SNRs) of 20 dB,
10 dB, 5 dB, 0 dB, and −5 dB are generated. The vowel recognition rates at
each SNR are 99.7%, 99.6%, 97.0%, 77.6%, and 54.0%, respectively. Also,
a test set of four vowel recordings from four speakers is tested with no noise,
giving 100% recognition rate. These data suggest that storage of auditory
representations for speech at the spectrotemporal resolution of the auditory
nerve over a typical range of spoken pitch does not require excessive memory
resources or computing to implement on parallel computer systems.

INTRODUCTION

Most research on sound recognition in computational systems has been on automatic
speech recognition systems. Automatic Speech Recognition (ASR) has primarily used
Hidden Markov Models (HMMs) to model the statistics of the acoustic features in
human speech (Rabiner, 1989). The performance of ASR systems using HMMs is
significantly worse in noisy compared to clean conditions especially in non-stationary
noise such as babble noise. The recognition accuracy for vowel identification of
current automatic speech recognition systems at −5 dB SNR is comparable to human
vowel identification scores at −15 dB SNR (Kalinli et al., 2010; Mi et al., 2013).
This performance gap increases even further if these ASR systems are only trained
with clean data instead of trained with both clean and noisy data (Kalinli et al., 2010;
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Pearce and Hirsch, 2000).

Template-based or exemplar-based approaches to sound recognition modeled on the
neurobiology and psycholinguistics of the auditory system can provide more accurate
modeling of auditory signals (Deng and Strik, 2007). A limitation often stated in the
past for template-based systems is the computational power and memory resources
required is too excessive (De Wachter et al., 2007). This limitation has become less
of a problem in recent years with availability of large increases in computing power
and memory storage. Furthermore, template-based systems can be implemented in
parallel in near real-time systems, such as field-programmable gate arrays (FPGAs) or
graphics processing units (GPUs).

A recent neurobiological model of the auditory system, the Object-Attribute Model
(OAM), postulates that long-term memory modulates neural spectrotemporal recep-
tive fields through recognition mechanisms early in cortical processing (McLachlan
and Wilson, 2010). Temporal information is not available at the onset of the sound,
necessitating the use of sequential slices of spectral information to compare to long-
term memory templates through time to recognize sounds. Hebbian learning enables
the creation and adaptation of the long-term memory templates for commonly occur-
ring sound timbres (McLachlan and Wilson, 2010). The stages of the computational
sound recognition model described here are based on the mechanisms in the OAM
and use neurobiologically plausible mechanisms for spectrotemporal processing of
the auditory signals fed to the model.

Research on categorical vowel perception has shown that vowels are not perceived
categorically but are rather perceived along a continuum (Schouten et al., 2003).
Human listeners do not make unanimous decisions about vowels when perceptual
vowel boundaries overlap in the F1/F2 vowel space (Peterson and Barney, 1952;
Hillenbrand and Gayvert, 1993; Neel, 2008). Although vowels have overlap in the
perceptual boundaries, vowels presented in isolation do have a region in the F1/F2
vowel space where they are most consistently identified (Fairbanks and Grubb, 1961).
This F1/F2 vowel-formant space is the region containing the points where at least 75%
of the listeners correctly identified the produced vowel. This suggests that a centroid
in the F1/F2 vowel space best represents a vowel.

The model is first trained until recognition accuracy proceeds to near 100% for ten
Klatt-synthesized (Klatt, 1980) vowels from the most representative vowel region
of the F1/F2/F3 vowel space in the seminal work of Peterson and Barney (1952).
The training determines if the number of templates and memory storage required
for correct recognition is feasible on current computer systems. Furthermore, the
recognition accuracy of the model with different resolutions of fundamental frequency
in the templates is compared to determine if fine pitch information is required for
recognition. Then, the template database is used to explore the benefit and adaptability
of the recognition system with speech babble noise added to Klatt-synthesized vowels
at multiple SNRs. In addition, the template database is used for recognition of a small
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set of recorded vowels /ae, 3, i, u/ from two male speakers to see if the model can
adapt from synthesized to real speech.

METHOD

The model is implemented in the programming language Python using the numpy
and scipy packages (Oliphant, 2007). The beginning processing stages are similar
to many other models involving the auditory periphery (Slaney, 1993). The stages
include a Gammatone filter bank similar to Slaney (1993), half-wave rectification as
an approximation of hair-cell transduction, and the formation of specific loudness by
short-duration temporal integration at each filter channel (Viemeister and Wakefield,
1991). Next, lateral inhibition is performed to sharpen the spectral resolution by off-
frequency inhibition (McLachlan, 2009). Following lateral inhibition is a nonlinear
dynamic saturation stage that provides loudness invariance and noise robustness.
The saturation stage calculates saturation thresholds across every filter channel
independently. At each filter, a Gaussian function weights the neighboring filters,
and the mean of the center filter and the weighted neighboring filters is taken as the
saturation threshold for that filter channel. Therefore, the saturation threshold can
increase in only specific regions of the spectrum to rise above the noise level. This
saturation mechanism can not only rise above white noise but also non-stationary
noise such as babble noise. More specific details of the processing stages of the
computational model can be found in McLachlan (2011).

The model is based on normal-hearing listener classification of the vowels /i, I, E, æ,
2, a, O, U, u, 3/. The fundamental frequency (F0) and first three formants (F1/F2/F3)
of these vowels are taken from the unanimously classified male spoken vowels in
Peterson and Barney (1952). The unanimously classified vowels are the vowels that
are heard as the intended vowel by all 70 listeners. The minimum and maximum
F0 values (93-203 Hz) are used to define the range for choosing the fundamental
frequency values. The F1(x1), F2(x2), and F3(x3) values for each vowel are fitted with
a three-dimensional multivariate Gaussian distribution,

fx(x1,x2,x3) =
1√

(2π)3|Σ| exp
(
−1

2
(x−μ)T Σ−1(x−μ)

)
, (Eq. 1)

where Σ is the covariance matrix, |Σ| is the determinant of Σ, and μ is the vector
of means. The tolerance region of the distribution is the region in which at least p
percentage of the points are enclosed. The tolerance region is defined as

(x−μ)T Σ−1(x−μ)≤ c = χ2
3 (p), (Eq. 2)

where c is the tolerance factor and χ2
3 (p) is the percent point function for probability

p of the chi-squared distribution with three degrees of freedom (Krishnamoorthy and
Mathew, 2009).

The surfaces in Fig. 1 are ellipsoids defined by a constant probability containing 30%
(p = 0.3) of the points (c = 1.42). Enclosing 30% of the data points is roughly one
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set of recorded vowels /ae, 3, i, u/ from two male speakers to see if the model can
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The model is implemented in the programming language Python using the numpy
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include a Gammatone filter bank similar to Slaney (1993), half-wave rectification as
an approximation of hair-cell transduction, and the formation of specific loudness by
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increase in only specific regions of the spectrum to rise above the noise level. This
saturation mechanism can not only rise above white noise but also non-stationary
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Fig. 1: Multivariate Gaussian distribution for each male spoken vowel
that are unanimously classified (Peterson and Barney, 1952). The ellipsoids
enclose at least 30% of the points in each distribution. This corresponds to
a tolerance factor of c = 1.42365 and roughly one standard deviation in each
direction F1/F2/F3.

standard deviation in each formant direction from the centroid of each vowel. These
vowel ellipsoids are the F1/F2/F3 vowel spaces that best represent the spoken vowels
from Peterson and Barney (1952) and recognition accuracy is expected to reach 100%.

Klatt-synthesized (Klatt, 1980) vowels are initially computed from the means of the
formants of each vowel ellipsoid at the mean pitch from the male vowel recordings.
The bandwidth for each formant frequency is determined by a fifth-order polynomial
fit to measured closed-glottis bandwidths (Hawks and Miller, 1995). Separate fifth-
order polynomials are fit to the data below and above 500 Hz. The other parameters
fed into the Klatt-synthesizer, besides the default Klatt-synthesizer (Klatt and Klatt,
1990) values are F4 = 3400 Hz, F5 = 4000 Hz, sampling frequency = 12 kHz, and
duration = 300 ms. This creates 10 Klatt-synthesized vowels at the mean values in F0,
F1, F2, and F3 space.

Spectral templates are computed from the 10 Klatt-synthesized vowels as the initial
training set. Then, to determine the number of vowel templates required for the
correct recognition of the 10 vowels, the program is iterated by choosing a random
vowel, random fundamental frequency (93-203 Hz), and random formant parameters
from the multivariate Gaussian distribution of the chosen vowel at each iteration.
Multiple training sets are computed at different fundamental-frequency resolutions.
The fundamental frequency in the training sets is chosen randomly at semitone
intervals of 3, 1, 0.25, and 0.1 calculated from the lowest male F0 (93 Hz) or at random
from the set of rational numbers. These parameters are used to Klatt-synthesize a new
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vowel, which is fed through the model. The output from the model is then compared
to all vowels currently in the stored template database. The most activated template
in the stored template database is checked to see if it comes from the same vowel
as the computed spectral template. If the vowel does not match (a misclassification),
the computed spectral template is added to the training database, and then the next
iteration begins.

The procedure for selecting a random fundamental frequency from the rational
numbers during the training phase is used to generate a testing set. The testing set
is Klatt-synthesized vowels with no noise added (clean) and Klatt-synthesized vowels
with babble noise added at SNRs of 20 dB, 10 dB, 5 dB, 0 dB, and −5 dB. For vowels
with added babble, a Klatt-synthesized vowel (sigkl) and a random 300-ms section of
the babble noise (signoi) recording from the Aurora2 dataset (Pearce and Hirsch, 2000)
are chosen at each iteration. The two signals are added together after determining the
proper coefficient to multiply by the noise to get the desired SNR. The final input

signal is sig f in = sigkl + signoi

√
psig
pnoi

10
−SNRdB

20 where the power of the 300-ms Klatt-
synthesized vowel is psig and the power of the 300-ms segment of babble noise is pnoi.
This iteration is done 100 times for each of the ten vowels for a total of 1000 inputs
at each SNR. 1000 vowel inputs or 100 for each vowel are also generated in the clean
condition. The Klatt-synthesized vowels in the testing set are then fed through the
model and compared to the template databases built during training for each training
set. Furthermore, recorded vowels produced from two native male English speakers
for four of the ten vowels are also compared against the completely random template
database. The recorded vowels are /ae, 3, i, u/.

RESULTS

The model requires 400,000 iterations to build the training database. The total number
of templates compared to iteration number in each training set is shown in Fig. 2a. The
number of templates stored for four hundred thousand iterations at semitone intervals
of 3, 1, 0.25, 0.1, and random is 189, 505, 1009, 1294, and 1324, respectively.
The recognition accuracy by the end of the four hundred thousand iterations for
the training sets at 3, 1, 1/4, 1/10, and random semitone intervals is 96.8%, 98.8%,
99.5%, 99.9%, and 99.9%, respectively. The addition of finer frequency resolution
adds fine pitch information that is not needed for high rates of recognition for the
vowels. The recognition rate drops only 3% from selecting the fundamental frequency
using 3 semitone intervals (5 frequencies total) to completely random selection of
the fundamental. Furthermore, the number of templates stored drops substantially
from 1324 with the completely random training set to only 189 for the training set
at 3 semitone intervals. This fine pitch resolution, although not being necessary
for recognition of American English vowels, is necessary for tonal languages and
emotional prosody and could be stored in the templates if required. With fine pitch
resolution stored in the templates, the model is also capable of detecting pitch at the
accuracy of highly trained musicians (around 0.1 of a semitone) (Moore, 2003).
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Fig. 1: Multivariate Gaussian distribution for each male spoken vowel
that are unanimously classified (Peterson and Barney, 1952). The ellipsoids
enclose at least 30% of the points in each distribution. This corresponds to
a tolerance factor of c = 1.42365 and roughly one standard deviation in each
direction F1/F2/F3.
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The bandwidth for each formant frequency is determined by a fifth-order polynomial
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order polynomials are fit to the data below and above 500 Hz. The other parameters
fed into the Klatt-synthesizer, besides the default Klatt-synthesizer (Klatt and Klatt,
1990) values are F4 = 3400 Hz, F5 = 4000 Hz, sampling frequency = 12 kHz, and
duration = 300 ms. This creates 10 Klatt-synthesized vowels at the mean values in F0,
F1, F2, and F3 space.

Spectral templates are computed from the 10 Klatt-synthesized vowels as the initial
training set. Then, to determine the number of vowel templates required for the
correct recognition of the 10 vowels, the program is iterated by choosing a random
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from the multivariate Gaussian distribution of the chosen vowel at each iteration.
Multiple training sets are computed at different fundamental-frequency resolutions.
The fundamental frequency in the training sets is chosen randomly at semitone
intervals of 3, 1, 0.25, and 0.1 calculated from the lowest male F0 (93 Hz) or at random
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vowel, which is fed through the model. The output from the model is then compared
to all vowels currently in the stored template database. The most activated template
in the stored template database is checked to see if it comes from the same vowel
as the computed spectral template. If the vowel does not match (a misclassification),
the computed spectral template is added to the training database, and then the next
iteration begins.

The procedure for selecting a random fundamental frequency from the rational
numbers during the training phase is used to generate a testing set. The testing set
is Klatt-synthesized vowels with no noise added (clean) and Klatt-synthesized vowels
with babble noise added at SNRs of 20 dB, 10 dB, 5 dB, 0 dB, and −5 dB. For vowels
with added babble, a Klatt-synthesized vowel (sigkl) and a random 300-ms section of
the babble noise (signoi) recording from the Aurora2 dataset (Pearce and Hirsch, 2000)
are chosen at each iteration. The two signals are added together after determining the
proper coefficient to multiply by the noise to get the desired SNR. The final input
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adds fine pitch information that is not needed for high rates of recognition for the
vowels. The recognition rate drops only 3% from selecting the fundamental frequency
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the fundamental. Furthermore, the number of templates stored drops substantially
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resolution stored in the templates, the model is also capable of detecting pitch at the
accuracy of highly trained musicians (around 0.1 of a semitone) (Moore, 2003).
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The percentage of the total templates (1324) stored for each vowel is shown in Fig. 2b.
The most added templates are for the vowels /U/ and /E/, which both overlap other
vowels in the first and second formant space (Peterson and Barney, 1952). These two
vowels are among the worst performers in being classified in Peterson and Barney
(1952) as well. The vowel with the least added templates is /i/, which also causes the
least perceptual confusions with other vowels for human listeners in both quiet and
noise (Peterson and Barney, 1952; Mi et al., 2013). Also, /i/ is the least overlapping
vowel in the formant space as seen in Fig. 1. This vowel was expected to require
less templates and cause less confusions than any other vowel. Fig. 2c shows the
percentage that each vowel contributes to the total number of misclassifications. This
shows that the vowels that overlap the most not only require the most templates for
correct recognition but also cause the most false classifications.
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Fig. 2: Vowel training performance. (a) Total number of templates
stored compared to the training iteration number. This is training with
fundamental frequency semitone interval resolution of 3, 1, 1

4 , and 1
10

semitones. Also training with random fundamental frequencies. Each new
template corresponds to a misclassification error in the training set. (b) The
percentage of the total stored templates for each vowel. The training is using
random fundamental frequencies shown in Fig. 2a. (c) The percentage of
the total misclassifications for each vowel. A misclassification means that a
vowel is classified instead of the intended vowel that should be classified for
that input. The training is using random fundamental frequencies shown in
Fig. 2a.
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frequencies is then tested with Klatt-synthesized vowels with babble speech added
at SNRs of 20 dB, 10 dB, 5 dB, 0 dB, and −5 dB. The results using 100 test inputs
for each vowel (1000 total inputs) at SNRs of 20 dB, 10 dB, 5 dB, 0 dB, and −5 dB
are 99.7%, 99.6%, 97.0%, 77.6%, and 54.0%, respectively. The Klatt-synthesized
template database is also tested against two male native English speakers’ recordings
of four vowels (/ae, 3, i, u/) for a total of 8 vowel recordings. The results with no noise
show that all 8 of the recorded vowels are classified correctly when using the Klatt-
synthesized template database. Although this is a very small sample size of recorded
speech, this is a promising result.

CONCLUSION

The model trains to near 100% recognition performance on the 10 Klatt-synthesized
vowels with a total of 1324 templates stored. The template database can be reduced
by 86% with only a 3% loss in recognition accuracy by using sparse fundamental-
frequency resolution. This reduced storage requires only 12 Mb of memory, which
is well within the memory storage requirements to compute on parallel architectures
such as FPGAs and GPUs. Furthermore, a 10-ms input passed through the model with
300 filter channels compared to a spectral template requires roughly 2 μs. The total
time required for the recognition decision would then be dependent on the particular
hardware chosen but is roughly the comparison for one spectral template (2 μs)
times the number of templates divided by the number of processors. Therefore, the
recognition decision does not become a very time-limiting step in the computation
on a parallel architecture with sufficient cores, and the model can perform with near
real-time performance. The model also performs exceptionally well when tested with
Klatt-synthesized vowels with babble noise added at SNRs of 20 dB, 10 dB, 5 dB,
0 dB, and −5 dB. The vowel recognition rates at each SNR are 99.7%, 99.6%, 97.0%,
77.6%, and 54.0%, respectively. Furthermore the Klatt-synthesized vowel template
database correctly recognizes recorded speech from two male speakers for the four
vowels (/ae, 3, i, u/). The further exploration of the computational mechanisms in the
model may elucidate how the brain adapts to learn language.
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The percentage of the total templates (1324) stored for each vowel is shown in Fig. 2b.
The most added templates are for the vowels /U/ and /E/, which both overlap other
vowels in the first and second formant space (Peterson and Barney, 1952). These two
vowels are among the worst performers in being classified in Peterson and Barney
(1952) as well. The vowel with the least added templates is /i/, which also causes the
least perceptual confusions with other vowels for human listeners in both quiet and
noise (Peterson and Barney, 1952; Mi et al., 2013). Also, /i/ is the least overlapping
vowel in the formant space as seen in Fig. 1. This vowel was expected to require
less templates and cause less confusions than any other vowel. Fig. 2c shows the
percentage that each vowel contributes to the total number of misclassifications. This
shows that the vowels that overlap the most not only require the most templates for
correct recognition but also cause the most false classifications.
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template corresponds to a misclassification error in the training set. (b) The
percentage of the total stored templates for each vowel. The training is using
random fundamental frequencies shown in Fig. 2a. (c) The percentage of
the total misclassifications for each vowel. A misclassification means that a
vowel is classified instead of the intended vowel that should be classified for
that input. The training is using random fundamental frequencies shown in
Fig. 2a.
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Is hearing-aid signal processing ready for machine learning?
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In the hearing-aids community, machine-learning technology enjoys a repu-
tation as a potential performance booster for signal-processing issues such as
environmental steering, personalization, algorithm optimization, and speech
detection. In particular in the area of in situ hearing aid personalization,
the promise is steep but clear success stories are still hard to come by.
In this contribution, we analyze the ‘personalizability’ of typical hearing-
aid signal-processing circuits. We discuss a few salient properties of a
very successful adaptable and personalized signal-processing system, namely
the brain, and we discover that among some other issues, the lack of a
probabilistic framework for hearing-aid algorithms hinders interaction with
machine-learning techniques. Finally, the discussion leads to a set of
challenges for the hearing-aid research community in the quest towards in
situ personalizable hearing aids.

INTRODUCTION

In this paper, we distinguish three groups of hearing-aid (HA) algorithm designers. By
a designer we mean any entity that is capable to affect the input-output behavior of an
HA algorithm. The first designer group entails the professionals: engineers, scientists,
and dispensing audiologists. The professionals deal with ex situ design. Roughly
speaking, engineers and scientists define the algorithm structure (i.e., the equations),
whereas audiologists set the HA algorithm parameters during a fitting session. After
a patient has been fitted and he walks away with an operational hearing aid, there
still remain two entities that are capable of changing the HA algorithm under in situ
conditions. The second designer group is the patient himself who can update an HA
algorithm through (machine-learning-based processing of) preference feedback. For
instance, patient feedback, collected through a volume-control wheel, could be used
to change some gain parameters of the hearing aid. Finally, the acoustic environment
could in principle be recruited to change parameters or structure of the HA algorithm.
With a sample rate of 16 kHz and a 16-bit code per sample, about one million bits of
acoustic data get recorded every four seconds by the hearing aid. One could imagine
that machine-learning methods take advantage of these in situ acquired acoustic data
streams, e.g., to train an environmental classifier.

In general, the field of machine learning refers to methods that aim to improve the
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