
464 465

1 
 

The influence of noise type on the preferred setting of a 
noise reduction algorithm 

ROLPH HOUBEN1
,
  TJEERD M.H. DIJKSTRA2, AND WOUTER A. DRESCHLER1 

1 Clinical and Experimental Audiology, Academic Medical Center Amsterdam, The 
Netherlands 
2 Institute for Computing and Information Sciences, Radboud University Nijmegen 

Despite the frequent application of noise reduction in hearing aids, there 
is little research on user preference for different settings of noise 
reduction. We therefore measured individual preference for noise 
reduction strength for speech that was embedded in background noise. In 
a laboratory experiment, three types of noise (speech shaped stationary 
noise, party babble, and traffic noise) were processed with two single-
channel noise reduction algorithms. Ten normal-hearing and seven 
hearing-impaired subjects participated. The preference for strength of 
noise reduction differed between the noise types and this was consistent 
for the two different noise reduction algorithms. The inter-individual 
spread between hearing-impaired listeners was as large as between 
normal-hearing listeners and as a consequence we found no systematic 
differences between the groups. These results support earlier findings 
that an individual tuning of noise reduction parameters is important. 
Furthermore, the results suggest that it could be beneficial to adaptively 
change the setting of noise reduction in a hearing aid, depending on the 
type of background noise. 

 

INTRODUCTION 
For many hearing-aid users their aid does not work well in noisy environments. In 
an attempt to improve listening to speech in a noisy background, most modern 
hearing aids have a noise reduction algorithm (NR). There are many different noise 
reduction implementations and strategies (Hoetink et al., 2009) and these processing 
differences can lead to differences in the sound perception by the user (Brons et al., 
2011). Besides differences between NRs, there can also be differences in subjective 
preference between users. The question is whether the factory default noise 
reduction settings, geared to the average end user, can be improved by 
individualization. Unfortunately, previous research on optimizing noise reduction 
parameters for individual listeners is scarce since most published research is focused 
on the comparison between distinct algorithms (Bentler et al., 2008; Loizou and 
Kim, 2011) or only compares on versus off (Bentler et al., 2008), and does not focus 
on optimization of a single algorithm. In a previous investigation (Houben et al., 
2011) we varied the strength of a spectral subtraction noise reduction algorithm and 
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Table 6 shows that certain band level differences co-vary with function words while 
others do not. This indicates that these band level differences are robust predictors of 
information content across individual talkers. 

CONCLUSIONS AND NEXT STEPS 
Talkers seem to use simple acoustic cues to encode specific parts of their speech as 
particularly information rich. It may not be surprising in itself that the talker helps 
the listener by marking important words acoustically. What we do find surprising is, 
however, the lack of technological utilization. We have not been able to identify any 
reports of speech transducing technology (be it telecommunication, hearing aids, or 
automatic speech recognition) exploiting the direct relation between simple physical 
properties and highly abstract linguistic content.  

The authors are preparing a follow-up to the reported experiment using its results in 
an algorithm for prediction of information richness with extremely short time delay. 
The algorithm will be used for modulation of speech materials masking out low-
content and high-content parts of the signal respectively. The manipulated signals 
will then be scored for intelligibility in a perception experiment. Hopefully, the 
results will pave the way for a new technology with a flair for speech. 
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(>1 yr) and they had symmetrical hearing loss. Their average hearing loss is shown 
in Figure 1. 

 
Fig. 1: Average hearing loss of the seven participants with impaired hearing. Mean 

values are shown and error bars denote the inter-subject standard deviation. 

Stimuli 
Speech (sentences from the female corpus of Versfeld et al., 2000) was embedded in 
three different background noises: unmodulated speech shaped noise (Dreschler et 
al., 2001, track 1), party babble (Bjerg and Larsen, 2006, track 39), and traffic noise 
(Bjerg and Larsen, 2006, track 7, selection of a passing car). Prior to processing, the 
speech and noise were mixed at +5 dB(A). We chose a random starting point of the 
noise for each stimulus (unfrozen noise). For the normal-hearing participants the 
presentation level of the stimuli was 68 dB(A) for each ear. For the hearing-impaired 
participants, we amplified the sound signals according to the NAL-RP fitting rule 
(Dillon, 2001). All stimuli were presented bilaterally and the left and right sound 
signals received the same amplification, based on the ear with the smallest hearing 
loss. This approach was possible because the asymmetry in the hearing loss was 
small. The speech-in-noise was processed by two noise reduction algorithms, 
implemented in Matlab. The first algorithm (NR1) is a modulation-based spectral-
subtraction noise reduction algorithm that was used before to measure individual 
preference for the strength of noise reduction (Houben et al., 2011). The algorithm 
has low-complexity and low-latency and it is representative for the type of noise 
reduction applied in current generations of hearing aids. The second algorithm 
(NR2) was also a spectral-subtraction algorithm. However, NR2 is more complex 
because it augments modulation detection with a hidden Markov model of speech 
(Zhao et al., 2008). To allow the noise reduction algorithms to settle in their 
transient state, the first ten seconds of all stimuli were discarded. Participants 
listened via headphones (Sennheiser HDA200) to the stimuli that were generated in 
Matlab and that were put through a headphone buffer (Tucker-Davis Technologies 
HB6). 
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measured which strength was preferred by the participants. The ten normal-hearing 
participants differed significantly in the strength that they preferred, suggesting that 
users might benefit from individualization of noise reduction. 
To further determine if individualization of NR is viable we need to know if the 
found differences between listeners also hold up in different background noises and 
with different noise reduction algorithms. Moreover, for application in hearing aids, 
we need to establish if there is a difference in preference between normally hearing 
and hearing-impaired participants. Here, we expand upon the previous research by 
investigating if the individual preference for the strength of a spectral subtraction 
noise reduction algorithm differs between: A. normal-hearing and hearing-impaired 
listeners, B. different background noises, C. different noise reduction algorithms. 

METHODS 

Experimental Design 
The prime variable under investigation was the maximum reduction of sound energy 
(G) by the noise reduction algorithm. With this variable we could manipulate noise 
reduction strength. We chose G because it strongly influences the trade-off between 
the amount of residual noise and unwanted distortions in the speech signal. A higher 
value of G corresponds to less residual noise, but also goes along with a higher 
degree of distortion. The settings for the two NR algorithms were chosen in such a 
way that the values were evenly spread across the range of settings relevant for 
clinical use. This led to the following conditions: a reference condition with no 
processing (i.e. G=0 dB), and for NR1 G= 4, 9, 11, and 19 dB, and for NR2 G= 4, 8, 
12, and 16 dB). Within each noise and each algorithm, every G value was compared 
to all other values (stimuli were not compared to themselves), and each run was 
done twice in a single session. It is important to note that the retests were not exactly 
identical as the speech material was different for each comparison. Preference was 
measured with paired comparisons (a two alternative forced choice paradigm). Each 
stimulus pair consisted of one sentence that was processed with two different values 
of G. For stimulus pairs with stimuli of similar quality, subjects have been shown to 
have a bias for the second stimulus (Wickelmaier and Choisel, 2006; Arehart et al., 
2007). To minimize this bias the text of the sentence was shown on the screen so 
that the subjects knew the content of the sentence beforehand. Subjects could listen 
to both alternatives as often as they liked. The subjects’ task was to choose between 
the two alternatives based on the question: “Imagine that you will have to listen to 
these signals all day. Which sound would you prefer for prolonged listening?”. 

Subjects 
Ten normal hearing (NH, average age 26±5 Yrs) and seven hearing-impaired (HI, 
average age 43±18) subjects participated in this study. All subjects had Dutch as 
their native language, and they were naïve participants. All normal-hearing subjects 
had hearing thresholds of 15 dB or better for each audiometric frequency from 125 
Hz to 8 kHz. All hearing impaired subjects were experienced hearing-aid wearers 
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The preferred values of G that were obtained with the QUL models were analysed 
with a repeated measures ANOVA1. “Subject” was treated as random effect and the 
rest of the variables were entered as fixed effects. Participants were categorised as 
either normal hearing or hearing impaired and this hearing loss classifier was nested 
in “subject”. The ANOVA results are shown in Table 1. Data for the significant 
main effects are shown in Figure 2. 
 

 

Effect Degrees of 
freedom F p 

Subject 16 3.4 0.002 

Hearing loss 1 0.5 0.82 

NR 1 9.4 0.001 

Noise type 2 25.1 <0.001 

NR * Noise type 2 3.9 0.2 

Table 1: ANOVA table for repeated measures analysis of variance on the 
individually preferred values for G. 

 
The main effect of subject was significant, indicating that at least one subject 
differed from the rest. “Hearing loss” was not significant. The reason for this is two-
fold. First, the difference in preference between the two groups was small. On 
average, the HI group preferred a G that was only 0.3 dB larger than that of the 
normal-hearing group. Second, the spread of preference between individuals within 
both groups was large (standard deviation was 3.6 dB and 4.0 dB for the normal 
hearing and the hearing-impaired group, respectively).Both main effects “noise 
type” and “algorithm” were significant, and their interaction was not. Post-hoc 
analysis of “noise type” showed that the preferred value of G for speech noise and 
party babble did not differ significantly (Bonferroni corrected p=0.5), and that for 
traffic noise the results differed significantly from both speech noise (Bonferroni 
corrected p<0.001, preferred G for traffic noise was 2.8 dB lower than for speech 
noise), and party babble (Bonferroni corrected p<0.01). Post-hoc analysis on 
“algorithm” showed that, on average, the subjects preferred lower G for NR2 than 
for NR1 (the difference was 2.1 dB). 
 

                                                
1 The distribution of G was skewed towards 0 dB. This violates the assumptions of ANOVA. 
However, ANOVA is robust against this violation and inspection of residuals showed no systematic 
errors. Additionally, all main results were verified and confirmed with Kruskall-Wallis rank based 
ANOVAs.. 
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Statistical Analyses 
The raw dichotomous data were analysed with a model that we developed for the 
analysis of paired comparison data with a continuous experimental variable (Houben 
et al., 2011). Briefly, the model assumes a trade-off between speech distortion and 
residual background noise. It models this trade-off for individual listeners by 
combining a quadratic utility model with logistic regression. We will refer to this 
model as the QUL model. With the QUL model we can obtain the value of G that 
corresponds to the participant’s highest preference. Confidence intervals around the 
individually preferred value of G were obtained by bootstrapping the models’ 
residuals (n=1000). We applied the QUL model to the data of all 17 subjects to 
calculate for each subject the preferred G per noise type (3 levels) and per algorithm 
(2 levels), leading to 102 values of preferred G. From this data, statistical 
significances were inferred with repeated measures analysis of variance in Matlab. 
For subjects 1 through 4 no data is available for party babble. 

RESULTS 
The QUL model fit the data well. The p-values indicated that the model did not 
deviate significantly from a model that fits the data perfectly (a saturated model). 
The p-values were calculated with a Χ2-test on the model deviance (df=17) and all p 
were larger than 0.2 with a median of 0.93. To further assess the goodness of fit we 
calculated the positive classification rate that represents the number of responses that 
were correctly described by the model. Classification rates can range between 0 and 
100% and 100% indicates a perfect score. For our data, the positive classification 
rate had a median of 90% and ranged from 60% to 100%, indicating good model 
fits. QUL estimates for the individually preferred values of G are shown in Figure 1 
(grouped data is shown in Figure 2). 

 

 
Fig. 1: Preferred value of G for each individual subject. Error bars denote within-
subject 95% confidence. Each panel shows data for a noise type, and subjects are 

ordered per subject group, based on their average value of G. 
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The large spread in preference between subjects supports earlier findings that an 
individual tuning of the noise reduction parameters is important. In a previous 
experiment with NR1 we also found a large spread in preference between normal-
hearing participants (Houben et al., 2011). For five out of ten subjects, the 
individual preference deviated significantly from that of the group average. In 
contrast to fitting the amplification of hearing aids, fitting of NR should be based on 
the personal preference rather than on hearing loss. Of course the question remains 
open if individualising noise reduction based on the subjective preference for the 
strength of noise reduction would ultimately increase user satisfaction. 
 
The preferred value of G was lowest for traffic noise. This noise was the least 
stationary of the set of three noises. Spectral subtraction algorithms need to estimate 
the signal to noise ratio to classify sound frames into noise or speech, and this is 
much more difficult for background noises that change over time. Due to the 
inevitable errors in the noise spectrum estimation the algorithms will introduce 
speech distortion. For traffic noise, it is plausible that more distortion might have led 
to a preference for lower values of G. However, we had expected that this might be 
less for NR2 because this algorithm was designed to track both the noise and the 
speech, and thus to minimize spectrum estimation errors. Perhaps NR2 made more 
estimation errors, resulting in more distortion. Another explanation would be that the 
NR2 algorithm favoured gain reduction for speech over gain reduction for noise 
(Loizou and Kim, 2011), thereby influencing speech quality. 

CONCLUSIONS 
Individual listeners differ strongly in their preference. This confirms the previous 
finding that it might be beneficial to individualize noise reduction. The range of 
preferred values for the strength of noise reduction overlaps between groups of 
normal hearing and hearing-impaired participants. This suggests that individual 
fitting of NR should not be based on the hearing loss. 
 
The preferred strength of noise reduction is lowest for our least stationary 
background noise (traffic noise). This pattern is the same for our two different 
spectral subtraction algorithms, but our subjects prefer less gain reduction for one of 
the two noise reduction algorithms. These results suggest that it could be beneficial 
to adaptively change the setting of noise reduction in a hearing aid, depending on the 
type of background noise. 
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Fig. 2: Preferred value of G from the QUL model for the main effects of noise type and 
algorithm. Error bars denote between-subject standard error of the mean (n=17).  

 

DISCUSSION 
The results show that the preference for the strength of noise reduction does not 
differ between our group of normal hearing (n=10) and hearing-impaired (n=7) 
participants. The preferred strength of noise reduction does depend on the type of 
background noise. It is lower for speech in traffic noise than for both stationary 
speech shaped noise and party babble. Although the preference also differs between 
the two noise reduction algorithms, the effect of lower G for traffic noise is the same 
for both algorithms.  
 
The lack of differences in preference between groups of normal hearing and hearing-
impaired participants has been found before. In a large multi-center study Luts et al., 
(2010) found no difference in preference of single channel NR over unprocessed for 
three groups of normal hearing (n=39), flat hearing loss (n=34), and sloping hearing 
loss (n=37). It seems that there is only limited effect of hearing loss on the preferred 
strength of noise reduction. Our interpretation is that inter-individual differences 
between both groups are in the same order of magnitude as within the groups. This, 
combined with the relatively small number of subjects typically involved in this kind 
of research, makes it hard to find small differences. In fact, with the knowledge 
gained here, we can calculate the a priori power for a hypothetical successive 
experiment. To reach a power of 0.9 we would need about 2000 subjects in both 
groups to detect significant differences between normal-hearing and hearing 
impaired participants. Rather than increasing statistical power by increasing the 
number of participants, it would probably be better to vary the types and severity of 
hearing loss. 
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Fast and intuitive methods for characterizing hearing loss  
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The possibility of integrating hearing-aid technology like dynamic 
compression in current and future consumer audio devices raises the 
question how parameters of hearing supportive algorithms can be adjusted 
by the user to either compensate the individual hearing loss or to 
accommodate listening preferences. Here, three methods for measuring the 
auditory capacity based on loudness judgments and comparisons were 
evaluated. All methods used a simple interface and appear generally suited 
for integration in consumer audio electronics. Results of the suggested 
methods were compared to adaptive categorical loudness scaling 
[ACALOS, Brand and Hohmann, J. Acoust. Soc. Am. 112, 1597-1604 
(2002)]. Gain prescriptions were derived for narrow-band loudness 
compensation based on the suggested methods, the clinically applicable 
ACALOS, and for NAL-NL2 [Keidser and Dillon, Hearing Care for Adults, 
133-142 (2006)]. All loudness based procedures led to similar gains. 

INTRODUCTION  

Less than 20% of the mild-to-moderate hearing impaired population uses a hearing 
aid (Hougaard and Ruf, 2011) although the majority would benefit from hearing 
supportive technologies. To overcome stigma particularly for groups with mild 
hearing loss, hearing supportive technology could be integrated into communication 
and media devices (e.g., mobile phones, TVs, music players). These devices offer 
sufficient signal-processing power and capability to deliver high-fidelity sound 
quality, however, the problem of the individual fitting is still unsolved. 
Standard audiometric measurements like hearing threshold appear not suited for 
integration in un-calibrated audio products, particularly if used in noisy 
environments. Moreover, like for hearing-aid fitting, knowledge about supra-
threshold hearing deficits might be beneficial. Here, three fast and intuitively 
accessible methods, motivated by the adjustment un-calibrated video monitors based 
on video test images are suggested. 

Instead of adjusting screen luminance levels to achieve well separable brightness 
impressions, sound levels were adjusted to match the well separable loudness 
categories “just audible”, “soft”, “comfortable”, and “loud”. The adjustment was 
either independent in three different frequency regions or additional loudness 
comparisons across frequency were included. The results were compared to 
laboratory measurements of the audiogram and adaptive categorical loudness scaling 
(ACALOS) for normal-hearing and hearing-impaired listeners.  
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