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On the relationship between multi-channel envelope and temporal
fine structure
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The envelope of a signal is broadly defined as the slow changes in time of
the signal, where as the temporal fine structure (TFS) are the fast changes
in time, i.e. the carrier wave(s) of the signal. The focus of this paper is
on envelope and TFS in multi-channel systems. We discuss the difference
between a linear and a non-linear model of information-extraction from the
envelope, and show that using a non-linear method for information-extraction,
it is possible to obtain almost all information about the originating signal.
This is shown mathematically and numerically for different kinds of systems
providing an increasingly better approximation to the auditory system. A
corollary from these results is that it is not possible to generate a test signal
containing contradictory information in its multi-channel envelope and TFS.

INTRODUCTION

The envelope of a signal is broadly defined as the slow changes in time of the signal,
whereas the temporal fine structure (TFS) are the fast changes in time, i.e. the carrier
wave of the signal. A typical method for splitting a signal into envelope and temporal
fine structure is by the use of the Hilbert transform, as first proposed in Gabor (1946).
In the cochlea, it is generally assumed that the action of the inner hair cells performs
an envelope extraction process for high frequencies. For low frequencies, they instead
extract the temporal fine structure.
The Hilbert transform method works well if the signal is narrow-band or a chirp. In
this case, there is no doubt as to which part of the signal should be regarded as part
of the envelope and which part should be regarded as part of the TFS. For complex
signals however, the splitting of a signal into a single envelope and a single TFS is
not a good model. Consider for instance the superposition of two pure tones with well
separated center frequencies: in this case the Hilbert transform method will return a
modulated envelope and a TFS with a center frequency being the average of the center
frequencies of the two tones. This splitting does not fit our perception of such a tone.
The most common method to analyze complex sounds is to split them into sub-bands
using a filter bank with band-pass filters, and then find the narrow-band envelope
and TFS for each sub-band channel. This is what is commonly done in most auditory
models. If enough overlapping filters are used, this leads to the classic definition of the
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THE SHORT TIME FOURIER TRANSFORM WITH A GAUSSIAN WINDOW

The STFT of a signal f (t) can be stated mathematically as

Vgf (τ, ω) =

ˆ ∞

−∞
f (t) g (t − τ)e−2πiω(t−τ)dt, τ, ω ∈ R, (Eq. 1)

where g is the window function that determines the resolution in time and in fre-
quency. In this section we shall only study STFTs using the Gaussian window ϕ (t) =
e−πt2 . The spectrogram is the squared modulus of the STFT: SGRAMg (τ, ω) =
|Vgf (τ, ω)|2.
The STFT with a Gaussian window has very special properties. It has been known
since Bargmann (1961) that the STFT with the Gaussian window ϕ multiplied by a
fixed function is an so-called entire function1 no matter what the input signal is. A
simple consequence of this is the following, shown in Chassande-Mottin et al. (1997):

− ∂

∂τ
∠Vϕf (τ, ω) =

∂

∂ω
log |Vϕf(τ, ω)| , (Eq. 2)

∂

∂ω
∠Vϕf (τ, ω) − 2πτ =

∂

∂τ
log |Vϕf(τ, ω)| . (Eq. 3)

These are the Cauchy-Riemann equations for the complex logarithm of the STFT.
The terms on the left hand side are the derivatives of the phase of the STFT of the
signal. The first term is commonly known as the instantaneous frequency. The second
term is sometimes known as the local group delay. In Flanagan and Golden (1966)
it was shown that the instantaneous frequency provides a suitable representation for
manipulating the signal in various ways with a minimum of distortion.
The equation (Eq. 2) shows that for a Gaussian window, there are two possible ways
of calculating the instantaneous frequency:

1. By computing the time derivative of the phase of the STFT. This is the method
used in the original phase vocoder by Flanagan and Golden (1966).

2. By computing the frequency derivative of the logarithm of the absolute value of
the STFT. This method was proposed in Chassande-Mottin et al. (1997).

The situation for the local group delay (Eq. 3) is the same, just switching the order of
time and frequency.
Since we have two different methods for computing the instantaneous frequency, we
can use the following simple procedure to recover the phase from the absolute value
of the STFT:

1. Compute the (real valued) log of the absolute value of the STFT.

2. Compute the partial derivative with respect to frequency of the result.
1An entire function is a function that is complex differentiable over the whole complex plane.
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spectrogram. For wide-band signals the spectrogram is a much better representation
of the intuitive notion of the envelope of a signal, than the Hilbert envelope is.
In this paper we will focus on the multi-channel / spectrogram definition of envelope
and TFS. When we talk about the envelope of a signal, we consider this to be the
envelopes of all the sub-band signals of the band-pass filtered input signal.
In many listening experiments (Drullman et al., 1994; Ghitza, 2001; Smith et al.,
2002) test signals have been generated by modifying the envelope and TFS of a signal,
and then synthesizing a signal from the modified envelope/TFS. It is highly desirable
to know the properties of the synthesized signals, and how such test signal can be used
to deliver relevant information to the human auditory system.
In this paper we will present two propositions on multi-channel envelope and TFS:

1. It is not possible to independently manipulate the multi-channel envelope and
TFS of a signal.

2. It is not possible to independently deliver a specified multi-channel envelope
and TFS to the inner hair cells.

The first statement is purely mathematical in nature, while the second statement hinges
on some basic assumptions on the cochlea.
In the rest of the paper we give an overview of three groups of systems that can be
used to model the human cochlear, and the associated mathematical and numerical
findings:

1. The short time Fourier transform (STFT) with a Gaussian window. This is not
a good model of the human auditory system, as we are restricted to a linear
frequency scale and only one type of filters. On the other hand, this case has
been very well studied mathematically, and there is a very simple relationship
between envelope and phase.

2. Filterbanks with Hilbert envelope. These are much more flexible systems than
the STFT, and there exists mathematical results linking envelope to TFS.

3. Filterbanks followed by an inner hair cell model. For these systems, there are
no known mathematical results (at the time of writing), but the numerical results
are very promising.

The experiments in this paper was done using the Linear Time-Frequency Analysis
Toolbox (LTFAT) Søndergaard et al. (2011b) and the Auditory Modelling Toolbox
Søndergaard et al. (2011a). A colour version of the paper and the experiments can be
downloaded from http://amtoolbox.sf.net/notes.
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these regions, the phase difference jumps from one value to another. The regions of
constant phase difference correspond largely to the energetic portions of the signal,
and the boundaries appear in between the regions.
The regions with perfect phase-coherence are produced both by the integration al-
gorithm based on (Eq. 2) and the iterative algorithm. In the case of the integration
algorithm, it is not useful to integrate across the phase of low energy parts of the sig-
nal, as the phase in this case is very noise. Therefore, the integration algorithm is
regularized to always keep the energetic parts of the signal coherent. Similarly, the it-
erative algorithm optimizes a cost function based on the distance between the desired
spectrogram and the spectrogram of the current best signal. If there is a phase error
in an energetic part, then there will be a large deviation between the spectrograms.
Therefore, the phase errors are “pushed” into the low energy parts, at which point the
algorithm gets caught in a local minimum, because there is a very little gain in cor-
recting a phase error in a low energy part. The end result of both algorithms is the
coherent patches.

GENERAL REDUNDANT LINEAR SYSTEM WITH HILBERT ENVELOPE

A very general results for finite, discrete systems has been shown in Balan et al.
(2006). Consider a linear system given by a complex matrix A ∈ CM×N :

cj =
∑

k

Aj,kfk, (Eq. 4)

where f ∈ RN is the input signal and c ∈ CM are the output coefficients. Such a
system can for instance be used to describe the action of a filterbank. The result shown
in Balan et al. (2006) is that if M > 4N , meaning that the system produces more than
4 times as many output coefficients as it takes input coefficients, the signal fk can be
reconstructed from the magnitude of the coefficients |cj| up to a complex phase factor.
The fraction M/N is known as the redundancy of the system. This means that given
a matrix A there exists a non-linear reconstruction method reconstructA such that

fr = reconstructA (|cj|) , (Eq. 5)

and
fr = eiCf, (Eq. 6)

for some constant C ∈ [0; 2π].
The result holds for any general matrix A, meaning that this result will hold for gam-
matone filterbanks and similar systems. If we design the filterbank such that each
subband consists of only positive frequencies, then the magnitude of the coefficients
|cj| is the Hilbert envelope of the subband channels.
The result will fail only for very specifically constructed matrices A, for instance for
rank-deficient matrices (another way of saying this is that for a randomly chosen A,
the result will hold with a probability of 1).

On the relationship between multi-channel envelope and temporal fine structure

Time (s)

Fr
eq

ue
nc

y 
(H

z)

0 0.1 0.2 0.30

1000

2000

3000

4000

5000

6000

7000

8000

−40

−30

−20

−10

0

Time (s)

Fr
eq

ue
nc

y 
(H

z)

0 0.1 0.2 0.3
0

1000

2000

3000

4000

5000

6000

7000

8000

0

0.5

1

1.5

2

2.5

3

Fig. 1: The figure on the left shows a spectrogram of the test signal “greasy” (for
clarity, the spectrogram has a limited dynamical range of 50 dB). The figure on the
right shows the difference between the phase of a STFT of the original signal, and the
phase of the STFT of a reconstructed signal. The signal was reconstructed from the
spectrogram on the right using (Eq. 2) and the Griffin-Lim algorithm Griffin and Lim
(1984).

3. Integrate the result with respect to time.

By this, we can never fully recover the phase, because the starting phase is lost. This is
no surprise, as the absolute value of the STFT of a signal will not change if the signal
is multiplied by a complex number with absolute value 1.
The reconstruction of the phase from the absolute value of the STFT could also be
done using the local group delay, which would amount to switching the role of time
and frequency. Similarly, it is possible to construct the log of the absolute value if we
know the phase of the STFT.
To use the equations (Eq. 2) and (Eq. 3) in a strict mathematical sense would require
the entire STFT to be known. However, the result can still be used on the output of
a filter bank by approximating the derivatives numerically. Such approximations take
the form of differences between samples or differences between channels.
It is important to note that (Eq. 2) and (Eq. 3) are concerned with the changes in en-
velope and TFS rather than the envelope or TFS themselves. Obtaining an absolute
value of the envelope or TFS from these equations requires an integration process to
some known point.
Figure 1 shows the result of an experiment where a test signal was reconstructed from
the values of its spectrogram using (Eq. 2) and a simple iterative algorithm first pub-
lished in Griffin and Lim (1984). From purely mathematical reasoning, it should be
possible to completely reconstruct the signal, except for a single, global phase shift.
However, due to numerical limitations and the finite running time of the algorithm,
this is not actually possible. Instead, one obtains a pattern like the one visible on the
right plot of Figure 1. Instead of the error being a single, global phase shift, the re-
sult shows that the reconstructed signal has large regions in the time-frequency plane,
where the difference to the original signal is just a constant phase shift. In between
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Fig. 3: The figure on the left shows the output of the simple auditory model applied
to the “greasy” test signal. The figure on the right shows the difference between the
phase of the filterbank representation of the test signal, and the phase of the filterbank
representation of the reconstructed signal. This is the exact same type of plot as the
left plot of Figure 2.

extraction process performed by the inner hair cells. We consider a simple auditory
model consisting of the first two stages of the model introduced in Dau et al. (1996a,b).
These stages are an auditory filterbank using 4th order gammatone filters which are
equidistantly spaced on the Erb-scale given in Glasberg and Moore (1990), followed
by envelope extraction using half-wave rectification and low-pass filtering using a 2nd
order Butterworth filter with a cut-off frequency of 1000 Hz.
Figure (3) shows the result of an experiment similar to the one performed in the pre-
vious sections. This time we try to reconstruct the test signal from the output of the
simple auditory model. The reconstruction method is a two stage approach that uses
a regularized inverse filter to partially undo the low-pass filtering, followed by an iter-
ative inversion of the half-wave rectification step using a BFGS method. Part of this
approach was suggested by Slaney et al. (1995).
In contrast to the reconstruction methods used in the previous sections, reconstruc-
tion is almost perfect for this case. Because the TFS is present at low frequencies,
the global phase error is avoided, and there is sufficient TFS to perfectly align the
energetic patches in the time-frequency plane.

CONCLUSION

TFS information can to a very large extent be recovered mathematically or numerically
from pure envelope cues. It cannot be precluded that the human auditory system
cannot also perform this task.
Knowing that TFS depends on envelope should make it possible to create better meth-
ods for manipulating the envelope by devising methods that construct the correct TFS
to “carry” the envelope (Decorsière et al., 2011).
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Fig. 2: The figure on the left shows the magnitude of the output of a filterbank us-
ing Gammatone filters equidistantly spaced on the Erb-scale. The input signal is the
“greasy” test signal. The figure on the right shows the difference between the phase
of the filterbank representation of the test signal, and the phase of the filterbank repre-
sentation of the reconstructed signal.

In the paper by Balan et al. (2006), the result is only stated for discrete systems of
finite length, as this is the easiest to prove. Extending the results to a linear time-
invariant system using FIR filters is trivial, as we can consider such a system as being
a succession of finite, discrete systems. For a filter bank, the redundancy requirement
means that the filter bank must have more than 4 times as many filters as its decimation
rate.
The result shown in Balan et al. (2006) is only an existence result, so no general
method for recovering the signal from the magnitude of the coefficients is provided
(the reconstructA method exists, but is unknown). This should be seen in contrast to
the mathematical result discussed in the previous section, which provide a very simple
and efficient method for reconstruction, but for much more specialized systems.
Figure (2) shows the result of an experiment similar to the one performed in the pre-
vious section. The test signal is the same, but this time the experiment is to try to
reconstruct the signal from the absolute values of the magnitudes of the output from
a filterbank using complex-valued gammatone filters. The magnitude of a complex
valued filterbank is the same as the Hilbert envelope of the corresponding real-valued
filterbank. An optimization method based on the limited memory Broyden-Fletcher-
Goldfarb-Shanno (LBFGS) unconstrained optimization algorithm was used to solve
the problem. The precise method is described in Decorsière et al. (2011). The result
has a similar structure as to the result from the previous section: again, the phase is
reconstructed with a constant offset over large patches in the time-frequency plane,
that largely corresponds to energetic parts of the signal.

SIMPLE AUDITORY MODEL

In the previous section we considered the Hilbert envelopes of filterbanks. In this
section we replace the Hilbert envelope by a more realistic model of the envelope

Peter L. Søndergaard et al.
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Re-focussing on the clinical targets  

CHRIS HALPIN1,2 
1Department of Audiology, Massachusetts Eye and Ear Infirmary, Boston, 
Massachusetts 
2Department of Otology and Laryngology, Harvard Medical School 

The objective of this presentation is to re-examine the clinical targets for 
hearing aid recommendation and processing.  The main clinical target is the 
damaged cochlea, and the main measure discussed will be the many patterns 
of clinical word recognition across level. Study of human temporal bones 
allows appreciation of the underlying damage to the cochlea in hearing aid 
cases, with somewhat surprising implications. Primarily, it is necessary to 
allow for and respond to, a model of depletion of the sensory epithelium (as 
in macular degeneration). There is an important difference between reverse-
engineering the audiology results and providing maximum information to a 
depleted receptor array. Diagnosis using word recognition, recommendation 
criteria, and implications for delivering optimal hearing aid output and for 
studying the results will be discussed. 

 

WHO IS IN THE WAITING ROOM AND WHAT DO THEY NEED?  
Figure 1 shows the sites of lesion of cases arriving in the author’s waiting room in 
the U.S.A. over one year based on the diagnosis codes listed for each case. (U.S. 
Dept. HHS, ICD-9-CM, 2003) ”Sensorineural” cases are treated as cochlear by the 
author unless otherwise indicated by the patients’ history and presentation. This 
approach allows progress beyond the view that nothing is known about the site of 
lesion when air matches bone. For example, study of human temporal bones shows 
the clear majority of losses with no air-bone gap not only show cochlear disease, but 
sufficient cochlear disease to account for the loss (Merchant and Nadol, 2010). 
Modeling sensorineural hearing loss as a function of cochlear damage has 
demonstrable, practical use in diagnosis, amplification and counseling in this clinical  
population. It is reasonable to proceed as if the damaged cochlea is what is wrong 
with the majority of our patients requiring hearing aids, and to test such modeling 
against the measurable behaviour of these patients. A framework for doing this will 
be presented below. 
Interaction with this population in the clinic brings forward a set of needs which are 
not often discussed.  These patients are told by hearing professionals (and 
advertisements) that everyone with “hearing loss” will receive life-improving benefit 
from amplification (Kochkin, 2011). Their friends, some of whom are careful, 
trusted observers, tell them that, in many instances, hearing aids “don’t work”. For 
the purpose of this discussion, both of these sets of observations will be treated as 
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