It can be stated that SAM mimics normal hearing in a more realistic way than the n-of-m strategy does, even though the modeled SRTs show little differences between SAM and n-of-m. With increasing internal noise (worse simulated cognitive condition), however, SAM outperforms the n-of-m strategy especially in model configurations with fewer auditory nerve cells. While the two strategies deliver about the same amount of place pitch cues, SAM provides more temporal pitch cues, which may well contribute to pitch perception according to the modeled results.

Results, of course, needs to be verified with clinical studies.

ACKNOWLEDGMENT

The underlying research reported in the paper was partially funded by the grant B514-09020 of the Thuringian Ministry of Education, Science and Culture.

REFERENCES

Horizontal-plane localization with bilateral cochlear implants using the SAM strategy

TAMAS HARCZOS1,2, ANJA CHILIAN1,3, ANDRAS KATAI1

1 Fraunhofer Institute for Digital Media Technology IDMT, Ilmenau, Germany
2 Institute for Media Technology, Faculty of Electrical Engineering and Information Technology, Ilmenau University of Technology, Germany
3 Institute of Biomedical Engineering and Informatics, Faculty of Computer Science and Automation, Ilmenau University of Technology, Germany

Sound source localization capability of cochlear implant (CI) users has been a popular research topic over the past few years, because it has both social and safety implications. While it is widely accepted that unilateral implantation does not provide enough information for this task, conditions, algorithms and their parameterization for the best performance in the binaural case are still in the focus of the research.

On ISAAR 2009, we presented a simulation study revealing the theoretical limits of localization performance using the widespread ACE strategy. We also gave an example of how left-right speech processor asynchrony may influence the perceived direction.

In the present paper we give an outline of a novel, auditory model based CI speech processing strategy called SAM. Furthermore, using the framework from the previous study, we show how localization performance increases when using SAM instead of ACE. We present detailed comparisons to show how factors like pulse rate, signal to noise ratio, reverberation, etc. affect horizontal-plane localization. Finally, we give a simple explanation, why, unlike other strategies, spatial perception with SAM is robust against device asynchrony.

INTRODUCTION

Over the past decade, cochlear implants (CIs) have become a widely accepted alternative for treatment of people with severe to profound hearing loss. While bilateral cochlear implantation (BI) is offered to a growing number of individuals, not all BI-users are 100% satisfied.

One possible cause for the dissatisfaction is the missing ability to robustly localize sound sources. The trend is to use <1K/s channel stimulation rate (CSR) and ≤9K/s total stimulation rate (TSR) with n-of-m strategies like ACE, which, in fact, allows for only very limited localization performance based on temporal cues, as shown e. g. in Harczos et al. (2010).
Furthermore, the most common (and generally only) aim of CI fitting is to yield better speech perception rates. Still, most BI-recipients can localize sound sources to some extent (Grantham et al., 2007), but only few can localize well (Seeber and Fastl, 2004).

The primary goal of this study is to evaluate horizontal-plane localization with the SAM strategy (see under), taking only interaural time differences (ITDs) into account. These have long been deemed unusable by CI recipients, but some studies have proven otherwise. For one of the most recent ones see Drapal and Marsalek (2010). Furthermore, factors being responsible for good or bad localization ability with SAM are searched for, and a performance-comparison between SAM and ACE is given.

METHODS

The SAM strategy

SAM (Stimulation based on Auditory Modeling) is a novel CI speech processing strategy (Harczos et al., 2011), incorporating active cochlear filtering (basilar membrane and outer hair cells) along with the mechanoelectrical transduction of the inner hair cells. An overview of SAM is shown in Fig. 1. Through its functional design several psychoacoustic phenomena like compression, adaptation and realistic cochlear delays are accounted for inherently. The coder, unlike in common strategies, is not restricted by a pre-defined channel stimulation rate and it activates stimulating electrodes in a stochastic manner.

Design of the experiments

The design of this simulation study was borrowed from Harczos et al. (2010), which can be looked up for details. An overview of the experiment design is shown in Fig. 2 and a short description of each step is given below.

Electrodograms

In this study, the output of the cochlear implant speech processing algorithms are always stored in the same matrix format, where the y dimension represents the CI electrodes, and the x dimension provides the possible time slots with the given total stimulation rate. (The matrix storage format ignores pulse-specific information like pulse width, phase gap, etc., but they are assumed to be identical among the strategies to be compared.)
An ACE vs. SAM comparison is presented in Fig. 4. In the figure, it can be seen that most electrode channels of ACE contribute only little to the ITD-based localization. In contrast to that, all channels of SAM provide ITD information, which can be used for localization.

RESULTS

This chapter presents the most important outcomes of the study. The results shown in the following section are based on the assumption that the two CI processors are perfectly synchronized. Estimations of the effects of missing synchronization to the localization performance are presented in the second section.

Synchronized processors

One characteristic of the localization performance is the error between the real and the localized direction of the sound source, as a function of the real direction. Fig. 5 presents the results of such a test for both strategies, so that they can be compared easily. In the first case (top row of Fig. 5), a low pulse rate ($TSR=4800/s$) scenario is tested, while in the second case (bottom row of Fig. 5) high total pulse rate ($TSR=14000/s$) is employed. Note that in all presented comparisons the total pulse rate is the same for both CI strategies, whereas, for ACE, $TSR = CSR \cdot N$ holds.

Results with the common $TSR=7200/s$ are not presented here, but it can be stated that those are better than in the case of $TSR=4800/s$ and worse than with $TSR=14000/s$.

Please note that the ACE-calculations are done with the untypically low $N=4$ setting. While this setting is valid and possible, in the practice –known to the authors–, values of 8 or 10 are used. Those are typically combined with channel stimulation rates of 720/s or 900/s. All four combinations of these values lead to the complete loss of ITD-information, i. e., zero ITD-based localization ability.

The effect of changing the pulse rate and that of various current spread settings is presented in Fig. 6. It can be stated that the extent of current spread (at least the tested settings) does not substantially affect localization ability. Merely the localization certainty decreases. An increase in the pulse rate, on the other hand, tends to reduce localization errors.

Fig. 7 presents the outcomes of the factor analysis regarding reverberation level, SNR, noise type and signal type. A characteristic difference is that –in terms of
SUMMARY
It has been shown that horizontal-plane localization of sound sources is working well with SAM over a wide range of SAM’s possible parameterization. The amount of cues for ITD-based localization preserved by SAM clearly exceeds that preserved by ACE, when compared using the same total pulse rate. Noise and reverberation seem to have less negative impact on the localization performance with SAM.

It has been illustrated, furthermore, that in the real-world scenario, where the CI processors are not synchronized, time-domain filtering of SAM makes the lag between the left and right devices less critical.

ACKNOWLEDGMENT
The underlying research reported in this paper was funded by the grant B514-09020 of the Thuringian Ministry of Education, Science and Culture.

REFERENCES

