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The speech-based envelope power spectrum model (sEPSM) [Jørgensen and 

Dau (2011). J. Acoust. Soc. Am., 130 (3),  1475–1487] estimates the 

envelope signal-to-noise ratio (SNRenv) of distorted speech and accurately 

describes the speech recognition thresholds (SRT) for normal-hearing 

listeners in conditions with additive noise, reverberation, and nonlinear 

processing by spectral subtraction. The latter represents a condition where 

the standardized speech intelligibility index and speech transmission index 

fail. However, the sEPSM is limited to stationary interferers due to the fact 

that predictions are based on the long-term SNRenv. As an attempt to extent 

the model to deal with fluctuating interferers, a short-time version of the 

sEPSM is presented. The SNRenv of a speech sample is estimated from a 

combination of SNRenv-values calculated in short time frames. The model is 

evaluated in adverse conditions by comparing predictions to measured data 

from [Kjems et al. (2009). J. Acoust. Soc. Am. 126 (3), 1415-1426] where 

speech is mixed with four different interferers, including speech-shaped 

noise, bottle noise, car noise, and cafe noise. The model accounts well for 

the differences in intelligibility observed for the different interferers. None 

of the standardized models successfully describe these data. 

 

INTRODUCTION  

Models of speech intelligibility can be very useful as tools for investigating which 

features of the physical speech signal are crucial for understanding the speech in a 

noisy background. Moreover, an accurate prediction metric is of great relevance in 

practical applications such as hearing-aid and telecommunication development. 

Current intelligibility metrics include the articulation index (AI) and its successor 

the speech intelligibility index (SII). SII-based metrics estimate the effective amount 

of audible speech information in a number of frequency bands, from the long-term 

frequency spectra of speech and noise. The audible information is weighted by an 

empirically determined importance function, describing the relative importance of 

the individual frequency bands to intelligibility. This approach can predict the 

intelligibility of speech subjected to low-pass and high-pass filtering and the effects 

of different stationary noise backgrounds (Kryter, 1962). However, the SII-metric is 

based on frequency information only, and cannot be successfully applied to 

conditions with reverberation. As an alternative, the speech transmission index (STI) 
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the intrinsic noise within the noisy speech. Figure 1C illustrates the resulting effect 

of the transmission channel on the SNRenv (top panel) and on the corresponding 

predicted percent correct (bottom panel) as a function of the input SNR. By 

comparing predictions with and without the transmission channel in the signal path, 

the change in intelligibility can be estimated. For instance, the change in speech 

recognition threshold, ∆SRT is estimated from the corresponding shift (in terms of 

the input SNR) at the 50 % point of the predicted psychometric functions. 

 

 

Fig. 1: (A) Block-diagram of the sEPSM processing structure. (B) Scheme 

for predicting speech intelligibility using the sEPSM. (C) SNRenv as a 

function of the input SNR (top panel) and the corresponding predicted 

percentage of correct responses (bottom panel). 

 

PREDICTING INTELLIGIBLITY OF PROCESSED NOISY SPEECH 

Model predictions were compared to intelligibility data of processed noisy speech by 

measuring the speech recognition thresholds (SRT) corresponding to 50% correctly 

understood sentences from the CLUE test (Nielsen and Dau, 2009). In one 

experiment, sentences were mixed with a speech-shaped noise and convolved with 

simulated room impulse responses having reverberation times corresponding to T30 = 

0, 0.4, 0.7, 1.3 and 2.3 seconds. In a second experiment, the noisy sentences were 

processed by a spectral subtraction algorithm defined by Berouti et al. (1979):  

                (Eq. 2) 
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estimates the integrity of the long-term temporal modulation content of speech. This 

approach makes it possible to account for room coloration such as reverberation, 

making this metric very useful for evaluating room acoustics in terms of speech 

intelligibility. However, both the SII and STI metrics are limited to predicting 

effects of stationary and linear distortions; they typically come short when noisy 

speech is processed by noise-reduction algorithms such as spectral subtraction, 

(Ludvigsen et al., 1993; Dubbelboer and Houtgast, 2007). One hypothesis for the 

shortcomings is that the metrics do not include the effect of the noise-reduction 

processing on the noise-part of the noisy speech (Dubbelboer and Houtgast, 2007, 

2008). In line with this hypothesis, Jørgensen and Dau (2011) presented a new 

metric denoted the envelope signal-to-noise ratio (SNRenv). This metric quantifies 

the ratio between the useful speech envelope power and the intrinsic noise envelope 

power within the noisy speech signal. The SNRenv therefore captures the changes to 

the noise envelope modulations induced by the noise-reduction processing, which is 

not included in the SII or STI. The SNRenv is determined using the speech-based 

envelope power spectrum model (sEPSM) where the key component is modulation-

frequency selective processing of the speech envelope. Here, key aspects of the 

sEPSM are presented and the model is evaluated in adverse conditions, including 

stationary and fluctuating interferers as well as linear and non-linear distortions.  

MODEL DESCRIPTION 

The processing structure of the sEPSM is illustrated in Fig. 1A. The first stage is a 

bandpass filterbank comprised of 22 gammatone filters with ERB bandwidth and 

one-third octave spacing, covering the range from 63 Hz to 8 kHz. The temporal 

envelope of each filter output is extracted via Hilbert-transformation and in turn 

analyzed by a modulation bandpass filterbank. The long-term integrated ac-coupled 

envelope power is then calculated from the output of each modulation filter. For 

each modulation channel, the SNRenv is calculated from the envelope power of noisy 

speech (PS+N) and noise alone (PN):  

                (Eq. 1) 

The resulting envelope-SNR values are combined across modulation filters and 

across gammatone filters using an integration model from Green and Swets (1988). 

An absolute sensitivity threshold is included such that only gammatone channels that 

are excited above the absolute hearing threshold are processed further in the model. 

The overall SNRenv is converted to the percentage of correctly recognized speech 

items using the concept of a statistically “ideal observer”. The ideal observer-stage 

contains two parameters that reflect the response set-size and the redundancy of a 

given speech material (see Jørgensen and Dau (2011) for details).  

The scheme for predicting intelligibility of processed noisy speech is shown in Fig. 

1B. Noisy speech and noise alone (assumed available separately) are passed through 

some transmission channel under test, such as a room with reverberation, and the 

stimuli are analyzed by the sEPSM. Here, the noise alone represents an estimate of 
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The filled squares represent predictions by the sEPSM, showing an increase of 

ΔSRT which agrees well with the measured data. In contrast, the corresponding 

speech-based STI (indicated on the right ordinate) is increased in all conditions of 

spectral subtraction, compared to the reference condition, predicting an increase in 

speech intelligibility. The STI thus fails to account for the measured data.  

Even though the two models are consistent in predicting effects of reverberation, 

they completely disagree in the case of spectral subtraction processing, with only the 

sEPSM being in line with the data. The critical difference between the STI and the 

SNRenv metric used in the sEPSM is that the SNRenv captures the effect of the 

spectral subtraction processing on the noise modulations, quantified by an increased 

noise envelope power, which is neglected in the STI. In the two cases studied here, 

the SNRenv metric appears to be a more general predictor of intelligibility than the 

STI. 

PREDICTING INTELLIGIBLITY IN FLUCTUATING NOISES 

The fact that the SNRenv is calculated from the long-term integrated envelope power 

leads to specific limitations in the abilities of the sEPSM to predict speech 

intelligibility. An amplitude modulated noise typically has a larger long-term 

envelope power compared to a stationary noise with the same audio-frequency 

domain SNR. This leads to a smaller SNRenv for modulated noise compared to 

stationary noise and the sEPSM would predict a lower intelligibility in modulated 

noise backgrounds. This contrasts the well known phenomenon of “speech masking 

release”, referring to the increased intelligibility of speech presented in a fluctuating 

noise compared to a stationary noise with the same long-term SNR (e.g., Festen and 

plomp, 1990). Typically, speech masking release is explained by the listeners ability 

to “listen in the dips” of the masker. 

Here, it is hypothesized that speech masking release can be explained by an increase 

of SNRenv during the time periods where the masker’s amplitudes are low. This 

hypothesis is investigated by modifying the sEPSM to estimate the envelope SNR in 

short time frames. Specifically, the temporal outputs from the modulation filterbank 

are segmented in 10-ms frames with square windows. For each segment, i, and 

modulation filter, the ac-coupled envelope power of noisy speech and noise alone is 

calculated and inserted in Eq. (1), yielding the SNRenv,i of that particular segment 

and modulation filter. Integrating SNRenv,i -values across modulation and audio 

filters gives an overall SNRenv,i for each temporal segment. The SNRenv of a given 

sentence is taken as the average SNRenv,i across all segments of that sentence. Apart 

from the segmentation of SNRenv, the signal-processing of model is the same as 

previously described. 

Results 

Predictions from the short-term sEPSM are compared to data collected by Kjems et 

al. (2009) on DANTALE II-sentences presented in four different noise backgrounds: 

Bottle noise, Car noise, Cafe noise, and Speech-shaped noise (SSN). The Cafe noise 
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denotes the estimated clean-speech magnitude spectrum,  is an estimate 

of the noise power spectrum, is the power spectrum of the noisy speech 

and α denotes the over-subtraction factor which controls the amount of subtraction. 

The experimental parameter was α, taking the values: 0, 0.5, 1, 2, 4 or 8. 

Results 

 

  

Fig. 2: Left: change in SRT as a function of the reverberation time. Right: 

change in SRT as a function of the over-subtraction factor α. The linear 

correlation coefficient (ρ) and root-mean-square error (RMSE) between the 

data end the sEPSM predictions are indicated on each panel. STI predictions 

are indicated as closed gray circles.    

 

Figure 2 (left panel) shows results from experiment one with ΔSRT as a function of 

the reverberation time. The open squares represent data averaged across six listeners 

where the SRT in the reference condition (T30 = 0) was found at an SNR of -3 dB, 

consistent with data from Nielsen and Dau (2009). The vertical bars indicate +/- one 

standard deviation of the listeners' mean SRT and amount to 0.9 dB on average.  The 

SRT increases with increasing degree of reverberation consistent with the data by 

Duquesnoy and Plomp (1980). Predictions from the sEPSM (closed squares) and 

STI (closed circles) also show an increase of SRT with increasing reverberation 

time, in good agreement with the data. Both metrics appear to capture the effect of 

reverberation on intelligibility of noisy speech. 

Figure 2 (right panel) shows results from the experiment with noisy speech 

processed by spectral subtraction. Here, the ΔSRT averaged across four normal-

hearing listeners is increased for all α > 0, reflecting a reduced speech intelligibility 

compared to the reference condition without spectral subtraction (α = 0). Such 

reduction in intelligibility is consistent with data from Ludvigsen et al. (1993).  
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in the bottom panels of Fig 4. Comparing the left and right panels, it appears that the 

SNRenv is increased during the periods where the amplitude of the modulated noise 

is low, i.e. in the period between 0.2 and 0.4 s and around 0.8 s. This leads to an 

increased mean SNRenv across the whole speech sample which in turn leads to an 

increase in predicted intelligibility. Masking release is thus predicted by the model 

due to a time-local increase of the short-term SNRenv during the dips of the masking 

noise.  

 
Fig. 4: Left: Temporal waveform (top panel) of a sentence mixed with a 

stationary noise (black) together with the noise alone (gray) and the 

corresponding SNRenv (bottom panel). Right: The same situation as the left 

panel but with speech mixed with a modulated noise. Comparing the right 

and left panel, it appears that the SNRenv is increased during the dips of the 

modulated masker, i.e. around 0.3 and 0.8 seconds. 

DISCUSSION AND CONCLUSION 

The sEPSM could accurately predict the change in intelligibility of noisy reverberant 

speech, similar to the classical STI metric. In addition, the sEPSM predicted data for 

noisy speech processed by a spectral subtraction algorithm where the STI failed 

completely. The gain over STI is the SNRenv-metric that includes the effect of the 

processing on the intrinsic noise envelope power, which increases after spectral 

subtraction, leading to a decrease of SNRenv and thus to a decreased predicted 

intelligibility. However, the sEPSM has shortcomings in conditions of fluctuating 

maskers, since predictions are based on the long-term envelope power. A solution to 

this is a short-term version that estimates the SNRenv in short time frames. The short-

term sEPSM could accurately predict the psychometric functions (percent correct 

versus SNR) for speech presented in four different noises, including a highly 

fluctuating Cafe noise. Neither the STI nor the SII are able to do this (Christiansen et 

al., 2010). A model analysis showed that the masking release predicted by the 

model, in case of the fluctuating noise, was caused by an increased SNRenv in the 

dips of the masker. The increase therefore occurs at higher modulation frequencies 

than the masker fluctuation frequency. The short-term calculation of SNRenv may, 

however, change the models ability to accurately capture changes to slow 

modulations, e.g. induced by spectral subtraction. It is therefore possible that the 
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and the SSN have the same long-term frequency spectra, but differ in their temporal 

characteristics, with the café noise being highly modulated with time. Figure 3 (left 

panel) shows psychometric functions (solid lines) estimated from measured data and 

corresponding sEPSM predictions (closed symbols connected by dashed lines). In 

addition, predictions from the long-term sEPSM for the Cafe noise are shown. There 

is a good qualitative correspondence between the predictions from the short-term 

sEPSM and the experimentally determined psychometric functions for all noise 

types, both in terms of horizontal placement and slope. In contrast, the long-term 

sEPSM clearly fails for the Cafe noise. It is noted that the ideal-observer parameters 

were calibrated to the SSN condition, after which, the parameters were fixed and 

only the noise changed. Figure 3 (right panel) shows a quantitative comparison 

between the predicted (closed squares) and measured (open squares) SRTs for the 

four interferers. The short-term sEPSM accounts for the masking release of the 

fluctuating Cafe noise, although it is slightly overestimated.  

 

 
Fig. 3: Left: Psychometric functions (solid lines) estimated from measured 

data by Kjems et al. (2009) and corresponding predictions by the short-term 

sEPSM (connected symbols) for speech presented in four different noise 

backgrounds (four shades of gray). Predictions from the long-term sEPSM 

are shown with a label on the curve. Right: SRTs estimated from the 

measured data (open squares) and predictions by the sEPSM (closed 

squares) as a function the noise type. 

MODEL ANALYSIS 

It is investigated how the prediction of speech masking release is reflected in the 

internal representation of the sEPSM. The top-left panel of Figure 4 shows an 

example of the temporal waveform of speech mixed with a stationary noise (black) 

together with the noise alone (gray). These are the stimuli that are input to the 

sEPSM, although the predictions in Figure 3 are based on an average across 50 

different sentences. Similarly, the top-right panel of Figure 4 shows the situation 

with an amplitude modulated noise. The corresponding segmental SNRenv is shown 
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Ordinal models of audiovisual speech perception  
TOBIAS S. ANDERSEN 

Informatics and Mathematical Modelling, Technical University of Denmark, 2800 
Lyngby, Denmark 

Audiovisual information is integrated in speech perception. One 
manifestation of this is the McGurk illusion in which watching the 
articulating face alters the auditory phonetic percept. Understanding this 
phenomenon fully requires a computational model with predictive power. 
Here, we describe ordinal models that can account for the McGurk illusion. 
We compare this type of models to the Fuzzy Logical Model of Perception 
(FLMP) in which the response categories are not ordered. While the FLMP 
generally fit the data better than the ordinal model it also employs more free 
parameters in complex experiments when the number of response categories 
are high as it is for speech perception in general. Testing the predictive 
power of the models using a form of cross-validation we found that ordinal 
models perform better than the FLMP. Based on these findings we suggest 
that ordinal models generally have greater predictive power because they are 
constrained by a priori information about the adjacency of phonetic 
categories. 

 

INTRODUCTION 
Speech perception in face-to-face conversation is based not only on hearing the 
acoustic speech signal but also on lip-reading. Observers tend to integrate 
audiovisual information across the sensory modalities without being aware of it. 
In the natural, ecological valid situation where the voice and lip-movements are 
congruent this facilitates speech perception (Sumby and Pollack, 1954). When 
an incongruent voice is dubbed onto a video of a talking head observers may 
perceive a fusion type McGurk illusion in which the perceived phoneme differs 
both from that mediated by the voice and that mediated by the face (MacDonald 
and McGurk, 1978; McGurk and MacDonald, 1976). The typical example of this 
fusion type McGurk illusion is when a voice saying /ba/ is dubbed onto a face 
saying /ga/ causing observers to hear /da/. Other types of McGurk illusions 
include combination illusions in which the observer hears both the phoneme 
mediated by the voice and the phoneme mediated by the face. An example of a 
fusion illusion is when a voice saying /da/ is dubbed onto a face saying /ba/ 
which observers tend to hear as /bda/. Visual dominance illusions is another type 
of McGurk illusions in which observers hear the phoneme mediated by the lip-
movements rather than that mediated by the voice.  

Because the influence of vision on hearing in speech perception is so profound 
understanding how it works may give us fundamental cues to how speech 
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short-term sEPSM will not predict the same as the long-term version in the 

conditions shown in Fig 3. This could indicate that different timescales are necessary 

to account for the short-term and long-term effects.   

It is an ongoing research topic whether speech masking release is dominated by 

speech envelope information or temporal fine structure (TFS) information. The 

sEPSM relies only on envelope information. Nevertheless, it predicts the masking 

release observed for the fluctuating Cafe noise. To the extent that sEPSM correctly 

models the auditory system, this suggests that envelope cues are more important for 

masking release than TFS, at least for these particular speech and noise 

combinations. This is in line with recent behavioral findings that TFS information 

may not be the key to speech masking release. Rather, it may facilitate the 

segregation of masker and target based on differences in fundamental frequency.  
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