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In many branches of spoken language analysis including Automatic Speech 
Recognition (ASR), the set of smallest meaningful units of speech is taken 
to coincide with the set of phones or phonemes. However, fishing for phones  
is difficult, error-prone, and computationally expensive. We present an 
experiment, based on machine learning, with an alternative approach. Instead 
of stipulating a basic set of target units, the determination of the set is  
considered to be part of the learning task. Given 18 recordings of Danish talkers 
performing a simple lab task, our algorithm produced a set of acoustically well-
defined units sufficient for identifying all the major semantic elements (be they 
parts of words, single words or several words), relevant to the task. As the sound 
encoding used was very simple – fundamental frequency (F0), Harmonicity-
to-Noise-Ratio (HNR), and Intensity samples only – the computational 
complexity involved was far lower than for phonemic recognition. Our findings 
show that it is possible to automatically characterize a linguistic message, 
without detailed spectral information or presumptions about the target units. 
Further, fishing for simple meaningful cues and enhancing these selectively 
would potentially be a more effective way of achieving intelligibility transfer, 
which is the end goal for speech transducing technologies.

INTRODUCTION 
A speech signal is a succession of acoustic-phonetic events – some abrupt, some 
short-lived, some characterised by a period of relative stability. Deciding what 
events should count as meaningful is a purpose-driven activity. If the purpose is a 
correct identification of the lexemes (words) represented in the speech stream, the 
formal setup is equivalent to that of the mainstream ASR. Current ASR technology 
is fairly successful when confined to semantically restricted domains, such as 
medical, scientific, or legal jargon where the vocabulary is well-delimited and where 
subtle intonational variations can be left out of consideration. When broadening 
the pragmatic scope to free-style dialogue, the identification of meaningful units 
becomes immensely intractable, arguably approaching AI completeness. In every-day 
conversation, the tiniest variations in sound can of course represent huge differences 
in conversational implicature. Just imagine what changing the intonation of the word 
yes can do to a question like “will you marry me?”.

In this paper we present a practical experiment in automatic identification of speech 
events. For reasons of tractability, we settled on data from a description task with 
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very limited degrees of linguistic liberty. The speech recordings were made in lab 
sessions with subjects describing the colors, shapes, and spatial relations of the 
figures in a simple drawing. Our objective, then, was to show that the raw sound 
data supplemented by a formal representation of the drawing would suffice for 
an inference engine to correctly identify the color terms and shape terms as they 
occurred in the speech stream. No pre-segmentation or manual annotation of the 
sound stream was thus involved. The recordings were analysed in three conceptually 
basic and computationally tractable acoustic parameters: intensity, HNR (Boersma, 
1993), and fundamental frequency (F0).

In the following sections, we first introduce the speech data and the acoustic analysis 
employed. We then present the inference system responsible for the mapping between 
sound events and semantic constituents. Finally we broaden the discussion by 
suggesting a new perspective for the development of speech enhancing devises.

Due to space limitations, we must skip many of the technical details. Most parts 
of the formal framework will appear in simplified versions; some are presented by 
examples only.

THE OVERALL GOAL OF THE EXPERIMENT
Given a plain-language description of a simple illustration, identify and classify the 
segments of the speech stream that denote the various constituent elements. The 
processing must be automatic (i.e. unsupervised) and based entirely on acoustic 
measurement, statistical analysis, and logical inference.

THE SPEECH MATERIAL
Our starting point was the Danish corpus DanPASS (Grønnum 2009). Corpus 
DanPASS, short for Danish Phonetically Annotated Spontaneous Speech, is a 
collection of recordings of Danish subjects performing a number of traditional 
phonologist’s lab tasks such as map guidance, construction reports, and descriptions 
of simple graphical layouts. The recordings were made in the non-echoic chamber of 
KUA (University of Copenhagen) using high quality B&K microphones. DanPASS 
has two subparts, the monologues and the dialogues, the former representing 18 adult 
male and female native speakers of Danish. We opted for this particular description 
task for these reasons:

• each recording has a very restricted number of content word types1,

• content words have specific and consistent denotations,

• content words have multiple occurrences in each recording.

1 Content word is the linguistic term for semantically ‘autonomous’ words, mainly nouns, verbs, and adjectives, which often do not depend 
on other words for their denotation (as opposed to e.g. conjunctions, pronouns, and prepositions).
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Transcription sample from DanPASS (describing Fig. 1).

I will start + down at the bottom of the figure with a blue + square + then I will go 
one step up + and take a green + and there will be a green circle + take one step up 
again + there is a + purple triangle

Commas designate stress, plus designate pause, equal sign designates hesitation. 
Notice the relaxed sentence syntax typical of spontaneous speech. The complete 
transcriptions and background information can be found at www.danpass.dk 
(permission required).

 
Fig. 1: The geometrical layout. Subjects were instructed to give a complete description 
of the network beginning with the bottom square by the arrow. The illustration is 
adopted from Grønnum (2009). The original figure is in color. The geometrical objects 
are blue, green, yellow, red, brown or purple. Some shapes occur more than once in 
the same color.

ACOUSTIC PARAMETERS AND NUMERICAL ANALYSIS

Acoustic parameters
DanPASS was recorded with a sampling rate of 44.1 kHz. From this the three 
parameters used in this study F0, HNR and intensity were calculated in 5 ms 
frames.

F0 is an estimate of the frequency of vocal fold vibration, i.e., the inverse pitch period, 
which in turn corresponds to the position of the maximum of the autocorrelation 
function of the signal. HNR is the degree of periodicity as designated by the relative 
height of this maximum given in dB. Details about the method used for calculating 
F0 and HNR is described in Boersma (1993). Praat calculates intensity in dB re 1012 
watts/m2 based on RMS and an absolute reference level from then recording. 

Data representation
Figure 2 shows the acoustic data representing the first sounds of the Danish unstressed 
article “den” (the), in phonetic terms a stop consonant followed by a full vowel: 
[dE].
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Some observations
The acoustic features and the corresponding phonetic speech elements are often 
straightforwardly correlated. Consider some examples.

• Intensity, t=1.875 ms: stopped sound correspond to a local Intensity minimum 
corresponding to a 2nd derivative maximum.

• HNR, t=1.930 ms: full vowel correspond to a local maximum for HNR (2nd 
derivative minimum).

• F0, t=1.940 ms: unstressed vowel correspond to a steady F0 drop (1st derivative 
minimum, 2nd derivative approaching zero).

 
Fig. 2: The acoustic parameters F0, HNR, Intensity and derivatives as a function of 
time. The vertical axis represents the abscissa, which is time in ms starting at t=1840 
ms. Each of the horizontal axes represents ordinates with normalized values between 
0 and 1 of each of the acoustic parameter derivatives. The functions are offset so 
the minimum of any given function is aligned with the ordinate value designating 
the derivative order e.g. the leftmost function represents the 0’th derivative of the 
normalized F0 i.e. F0, the adjacent function represents the first derivative etc.

DISCRETIZATION OF THE SPEECH STREAM
Generalizing the observations above, we introduce the concept of proto-phones. 
Informally, a proto-phone is an acoustic pattern visible in the dimensions of F0, HNR, 
and Intensity (including their derivatives), anchored to a specific time frame. The 
phonetic class of stopped consonants thus corresponds to the proto-phone formally 
defined as in Fig. 3.
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Fig. 3: Proto-phone corresponding to the Danish stopped consonant where f represents 
the measured value in each parameter while f’, f’’, f’’’, ... represent the 1st, 2nd, 3rd, 
... derivatives.

The general scheme is that proto-phones are determined as combinations of values 
for each of the three parameters including their derivatives up to a certain limit. The 
permitted values are defined by a value space VSpace.

The derivational limit selected determines the granularity of the speech segmentation, 
or in other words the time window in which each speech event is confined. Setting the 
limit to, say, 8 derivatives, detectable speech events can have durations up to eight 
time frames before and eight time frames after the focus frame, or 17 frames in total. 
In our current setup, 17 frames correspond to a time window of 85 ms – a reasonable 
choice for studying phonemic events like stops, fricatives, and vowels.

The set of possible proto-phones is, of course, much larger than the set of symbols 
used in traditional phonetic transcriptions. While most combinations are extremely 
unlikely to ever occur in an actual Danish speech signal, some are expected to occur 
in other languages. Examples are the tongue clicks of South African languages like 
Xhosa. The click is characterized by a local intensity maximum corresponding to a 
proto-phone like the one in Fig. 3 except that the f’’ value for INT is negative.

Yet other proto-phone types are found in non-linguistic sound instances only, such 
as the rattling noise of a paper sheet being manipulated by a test person, a beep from 
a watch, a chair being moved, and so forth. Signal decoding at the level of the proto-
phones may thus provide a basis for linguistically informed sound transduction in 
speech enhancing devises; more on this in the final section.

Each sound recording was segmented into proto-phone events using statistical best-fit 
methods. The algorithm is presented here only very briefly. For each time frame, two 
factors are determined, (i) the proto-phone configuration p that provides the closest 
match to the acoustic measurements, and (ii) a temporal likelihood factor t based on 
expected proto-phone duration (a distribution function defined independently of the 
particular sound signal). Finally, the anchoring of proto-phone events to time-frames 
is performed by maximizing p·t. Further details are to be published elsewhere.

LINGUISTIC CLASSIFICATION
The speech streams, now discretized at the level of the proto-phones, were then 
further segmented into potentially meaningful units using the Siblings-and-Cousins 
algorithm of Henrichsen (2004). Originally, the S-and-C algorithm was suggested as 
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a way of organizing the lexical items (words) occurring in an unannotated text corpus, 
in clusters based on their distributional similarity. A main ingredient in the S-and-C 
framework is the proximity measure comparing the similarity of two types based on 
the distribution of their adjacent tokens (left and right) in the corpus. Modifying the 
algorithm slightly to accommodate the current data type, the proximity of two proto-
phone n-grams2 X and Y is given by:

   (Eq. 1) 

where S is the sound signal segmented into proto-phones, Voc is the set of all n-proto-
phone types in S, L1 is the number of occurrences in S of the substring [z X], L2 of 
[z Y], R1  of [X z’], and R2 of [Y z’], Cx, Cz and Cz’ is the number of occurrences in S 
of types X, z, and z’, respectively. Proximity values range between 0 and 1 (for valid 
input). Kindred n-grams score high, unrelated n-grams score low.

In these examples, Ntrekant is short for the proto-phone n-gram representing the 
type ‘trekant’ (triangle) as pronounced by the speaker represented as S13. Similarly 
for Ncirkel (circle),  Ngul (yellow),  and Nover (over). As the example suggests, word 
types belonging to the same semantic category, e.g. color terms, shape terms, or 
direction terms, typically score high while unrelated pairs like ‘trekant’ + ‘over’ 
score low. Using the proximity scores for all pairs of proto-phone n-grams, semantic 
equivalence classes were derived with simple statistical methods.

In this sample from the equivalence class of X=’trekant’ (triangle), proximity values 
appear on the left. Only the four top-ranked (i.e. most cognate) n-grams are shown, and 
the proto-phones have been replaced by their nearest phonetic equivalents (SAMPA-
style, www.phon.ucl.ac.uk/home/sampa/danish.htm) for perspicuity. Notice that two 
distinct phonetic realizations of “trekant” are present. Otherwise, the derived class 
faithfully represents the shape terms.

2 In linguistic terminology, an n-gram is a number of adjacent segments in a sequence of tokens (e.g. words, phonemes, or proto-phones). 
Special cases are the bigram (n=2), trigram (n=3), and soforth. A single token is its own monogram (n=1).
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Observe, however, that the n-gram of ‘lilla trekant’ (purple triangle) has been 
included among the shape terms, perhaps unexpectedly. Since the drawing (Fig. 1) 
has only a single purple figure, purple is in this particular setting void of information, 
hence cannot function as a distinguishing feature in the classifying regime. This is an 
illustrative example of speech unit identification as a purpose-driven activity.

THE INFERENCE ENGINE
An inference engine performs the mapping of speech units on semantic constituent 
properties (color and shape terms), based on a formal representation of the geometrical 
network. The algorithm is implemented in the programming language PROLOG3. In 
this language, propositional knowledge is particularly easy to formalize and to reason 
about.

Fig. 4: Formal representation of the geometrical layout (Fig. 1), expressed in PROLOG 
clauses.

The symbols e1, e2, ... , e13 in Fig. 4 are semantic constants referring to the thirteen 
figures of the geometrical layout (Fig. 1). Each symbol belongs to one color set and to 
one shape set. e1 thus denotes the blue square (the starting point of the descriptions) 
while the purple triangle is e3.

The test subjects were instructed to name all figures. Though no clues were given as 
to the order of the enumeration, the subjects seemed to follow an adjacency policy 
proceeding from each figure to a neighboring one whenever possible. Figures e1, e2, 
and e3 were thus always named first, and in that order. The central purple triangle 
marks a point of choice, leaving six optimal paths through the possibility space. We 
therefore expected the subjects to select their naming strategy among A-F.

3 Prolog is a programming language based on logical inference rather than assertive commands (e.g. Bratko, 2000). Prolog is often used 
for AI and for applications for deductive reasoning.
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In consequence, the objective for the inference program was to select correctly among 
the paths A-F for each subject based on the speech unit classes imported from the 
S-and-C application. To our surprise and, initially, disappointment the program found 
only 14 paths. On closer inspection of the sound recordings, however, we discovered 
that two of the subjects had actually chosen alternative (and less straight) paths4 not 
in A-F while the remaining two made a naming error each. When compensating for 
these irregularities, the inference engine hit 100% precision.

CONCLUDING REMARKS
So, what has been obtained by this toyish experiment? Of course, fishing for 
meaningful units in discourse like the circle-and-triangle monologues is far less 
complex than searching for pragmatic cues in a realistic conversational scene. This 
being said, our experiment did show that complex phonetic units could be identified, 
categorized for semantic denotation, and even used for a ‘practical’ purpose (path 
detection) in a radically data-driven setup not presuming any knowledge about the 
phonetics, vocabulary, or semantic categories of the Danish language as such. In 
contrast, semantically active parts of the speech sound were detected based on low-
level acoustic cues only, yet providing enough data for an inference machine to 
perform a high-level semantic decision task.

The human brain is the ultimate inference machine. Inspired by our test results, we 
speculate that the development of speech transmitting devises could benefit from a 
change in strategy. Instead of amplifying uncritically the sound signal as such, fishing 
for simple meaningful cues and enhancing these selectively would provide better data 
for the receiving mind in its reconstruction of the intended message. The overall goal 
for speech transducing technologies like hearing aids and telecommunication would 
then be redefined from signal transfer to intelligibility transfer. 
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