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Hearing aid (HA) algorithms contain a large number of tuning parameters that 
need to be optimized with respect to the expected patient satisfaction. Here 
we report on a new fitting-engineering approach where patient measurements 
(audiogram, listening tests etc.) are transferred without loss of information to 
optimal values for HA tuning parameters. Our approach is rooted in Bayesian 
decision theory and takes properly account of inconsistencies in the measured 
patient data. The presented approach is envisioned to assist the experienced HA 
dispenser in the challenging task of fitting a HA algorithm to a specific patient 
in a limited time.

INTRODUCTION 
Consider a HA algorithm y = H (x,θ), where   and   are acoustic input and output sig-
nals, respectively, and θ is a vector of HA tuning parameters (like compression ratios, 
time constants, filter coefficients, etc.).  There is an essential difference between the 
arguments x and θ. While it is easy to record x with a microphone, it is very hard to 
get good values for θ. After all, we cannot measure tuning parameter values in nature; 
instead, we have to choose appropriate values for θ ourselves. 

In order to appreciate the complexity of this problem, consider the following back-of-
the-envelope calculation. A typical HA algorithm contains about 140 tuning parame-
ters (say, 15 frequency bands times 7 parameters shared by the AGC and spectral sub-
traction modules, plus 35 filter taps shared between the feedback cancellation and 
beamforming filters). If we assume that each parameter can take on 5 interesting val-
ues (very low, low, medium, high, very high), then the total number of potentially inter-
esting algorithm configurations is 5140. This is far more than 5115, the number of elec-
trons in the universe. Hence, at face value, finding the optimal parameter values for a 
specific patient (the fitting task) appears to be at least as complex as finding a specific 
electron in the universe. 

How do we deal with this complexity? We must somehow determine good values for 
θ based on measurements about a patient. What can we know about this patient? We 
can measure his auditory profile a, which refers to a set of variables including the 
audiogram, SNR loss and demographic data. Moreover, we can carry out listening 
tests (e.g. paired comparison tests) with this patient and collect all results in a multidi-
mensional variable D. The data set {D,a} contains all information that we can acquire 
about a patient. 

Rather than an algorithm y = H(x,θ), we would therefore prefer to have access to an 
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alternative algorithm  y=H′(x,D,a), because in the latter case all arguments (x,D,  and 
a) can be measured in nature. Hence, if we have access to algorithm H′ (H-prime), we 
are not challenged to choose values for the arguments, but instead just measure them, 
and apply the algorithm H′(x,D,a) instead of H(x,θ). Since H′ takes as its arguments 
all available data (evidence) about the problem at hand, we call H′(x,D,a) an evidence-
based hearing aid algorithm, in contrast to H(x,θ), which is ‘just’ a HA algorithm.

We have developed a consistent mathematical theory for designing evidence-based 
hearing aid algorithms from a given HA algorithm H and a measured data set {D,a}. 
In other words, we have developed a mathematical theory for fitting hearing aids. In 
this paper, we will describe our theory for evidence-based hearing aids in (relatively) 
easy mathematical terms. 

HEARING AID TUNING THROUGH EXPECTED UTILITY MAXIMI-
ZATION
For a given patient, our objective is to choose values for the tuning parameters θ such 
that the ‘expected patient satisfaction’ is maximized. Clearly, we cannot measure 
patient satisfaction directly, since we can only measure {D,a}. Let us introduce a model 
for patient satisfaction, called utility model (name is derived from decision theory),

    z = U (y)+εz  (Eq. 1)

where z is the listener’s perceived utility (the perceived satisfaction rate) for signal y,  
U(y) a deterministic utility model and εz is an internal noise term that captures the part 
of   that cannot be modelled by U(y), see Figure 1.

Fig. 1. Algorithm tuning through expected utility maximization (see text).

Examples of appropriate utility models for hearing aid patients include Q3 (Kates and 
Arehart, 2004), PHAQM (designed by John Beerends, TNO), PEMO-AQ (designed 
by Kollmeier’s Oldenburg group, see also contribution by Bondy et al. (2007) at this 
conference) or alternatively the Speech Intelligibility Index (ANSI, 1997) if we choose 
that our utility should reflect intelligibility rates.  Since y=H(x,θ), the utility model will 
implicitly depend on x and θ, so we will sometimes write U(x, θ) to emphasize this 
dependency. We define the expected utility (EU) by averaging the utility over a data 
set X={x1,...,xK} of relevant input signals as follows,

     (Eq. 2)
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The expected utility is a function of the HA tuning parameters θ. We will want to select 
HA tuning parameter values θ* that maximize the expected utility. Mathematically, 
this idea can be expressed as

       (Eq. 3)

In principle, this idea can simply be executed by evaluating eq. 2 for a set of candi-
date values Θ={θ1,..., θJ} and choosing the value θ ∈ Θ  that gives maximum expected 
utility. While this plan for finding optimal HA tuning parameters is simple enough 
(although computationally heavy), there are a number of remaining problems with 
this approach.  In particular, 

1. What utility model should we use? In general, perceptual evaluations are dif-
ferent for each patient. 

2. How do we make use of the measured patient data {D,a}? 

3. How do we deal with inconsistent patient data and other uncertainties?  

In the next sections we extend the basic HA tuning system (eqs. 2 and 3) to address 
these issues.

MODELS FOR PATIENT RESPONSES
A first observation is that perceptual preferences can be different for each patient. In 
order to model individual satisfaction rates we will use a parameterized utility model 
U(y,ω), where we allow the utility parameters ω to be adapted to individual patients.

The Fitting Model
While each patient will indeed be different from every other patient in some way, many 
patients will still perform similarly to others, in particular to those patients with simi-
lar auditory profiles. The assumption that similar auditory profiles imply similar per-
ceptual responses can be captured by a fitting model

       (Eq. 4)

where ψ are the parameters of the fitting model (to be discussed later), see Figure 2. A 
fitting model F takes as input an auditory profile a and provides as output the typical 
utility model for patients with similar profiles. The fitting model selects a typical util-
ity model by setting the parameters ω of the utility model. 

It may seem like a lot of unnecessary machinery to introduce yet another model F when 
we already have a utility model U. Still, we think that F is a very essential model that 
links behavioral data from the entire patient community to any specific patient. Thus, 
a properly tuned fitting model F may substantially reduce the amount of time needed 
to spend with any specific patient in order to get a well-tuned hearing aid algorithm.
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Fig. 2: Flow diagram for fitting and tuning (see text).

The Behavioral Model
Note that perceived utilities z are not the same as patient decisions during listening 
tests.  A patient’s perceived utility z is an internal representation and hence not observ-
able. However, we can elicit utility-dependent decisions d from the patient through 
listening experiments and subsequently use these decisions to update our knowledge 
about the utility and fitting models. Maps from utilities to decisions are called behav-
ioral (or choice or decision) models in the literature (Train, 2003), see Figure 2. In our 
framework, the behavioral model 

       (Eq. 5)

takes as input a set of utilities and delivers predicted patient decisions  as output.  The 
particular choice for our behavioral model depends on the experimental protocol in the 
listening test. For instance, consider a paired comparison test where two signals  y1 and 
y2 are presented to a patient who is asked to select the best signal. ‘Best’ here refers to 
the specific perceptual criterion that we wish to model. For instance, we may ask the 
patient to pick the signal with best ‘overall quality’, or with ‘least amount of noise’, 
etc. We can derive the behavioral model for patient decisions under the assumption 
that, when faced with a set of possible choices, a patient chooses the one with maxi-
mum perceived utility, i.e. a patient chooses y1 if z1>z2. Assume that the patient’s deci-
sion is stored in a variable  through the following assignment:

       (Eq. 6)

Under some mild mathematical conditions for the internal noise term εz, we can derive 
the following behavioral model for the probability that d=1,  

       (Eq. 7)

In the psychophysical community, this is called the Bradley-Terry model (Bradley and 
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Terry, 1952). For alternative experimental protocols, corresponding behavioral mod-
els can be derived. 

COMMUNAL AND PERSONAL FITTING 
Up to this point, we have introduced a few models that capture the perceptual responses 
of patients. Before we discuss how we train these models from measured patient data 
{D,a}, we describe the data set in more detail.  

As discussed, we let the variable a hold a patient’s auditory profile including his audi-
ogram and SNR loss, but possibly also including variables such as gender, age or other 
demographic data. Basically, the variable a relates to all measurements on a patient 
excluding (behavioral) measurements obtained from listening experiments. A listen-
ing experiment (also known as a trial or test) consists of a set of listening events {e,d}, 
where e holds the inputs to a single listening event (e.g., a pair of audio samples), and 
d refers to the patient’s response (decision) for the event (e.g., “first sample is preferred 
over second sample”). We will write D to denote the collective data obtained from a 
listening experiment. Consider a specific patient i. In general, there are two sources of 
behavioral data that we can use for learning about patient i‘s utility function. 

(1) We can perform listening experiments on patient i (with auditory profile a=a) 
and collect the results in variable D1.

(2) We can also use listening results from all other patients with similar auditory 
profiles and collect the results in the community data variable Dc.  

Summarizing, there is a data set  that contains data from a specific patient i and there is 
also a data set {Dc,ai}, which refers to the collection of all other data sets.  We also use 
the notation D ∫ {Dc,Di} to refer to all data from listening experiments and a ∫ {ac,ai} 
for all available auditory profiles.

Now assume that we have collected a large community data set {Dc,ac} from listening 
experiments with corresponding auditory profiles. We can also run all audio samples 
from these listening experiments through our utility and behavioral model in order to 
produce a set of model-predicted patient responses  D̂c. Next, we use a machine learn-
ing procedure to adapt the fitting model parameters to values ψ=ψc such that the model 
predictions ̂Dc  match the actual patient responses Dc as closely as possible (see the box 
‘communal fitting’ in Figure 2).  The details of this learning procedure are beyond the 
scope of this paper.  We call this process communal fitting because our fitting model F 
has now absorbed all relevant information from the community database {Dc,ac} into 
its coefficient values ψc. 

Let us now assume that a trained fitting model has been installed in an appropriate fit-
ting software product at a HA dispensing facility. Consider a patient   who visits a dis-
penser’s office and is advised to accept a specific HA with algorithm H(x,θ). His audi-
tory profile ai is measured and used to select utility model parameters ωi=ai,ψc) that 
are typical for all other patients with similar auditory profiles. Next, for a relevant data 
set of audio samples X={xi,...,xK}, we can compute the expected utility by eq. 2 and 
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find optimal HA tuning parameters θ* by executing eq. 3. At this point, we have used 
the data set {Dc,ac,ai} to find the optimal tuning parameter values θ* and effectively 
we have just designed the evidence-based HA algorithm H(x,θ*)=H(x,Dc,ac,ai). Note 
that we have not yet performed any listening experiments with patient   himself.  Of 
course, we may decide to fine-tune the utility model to this particular patient through 
an individual listening test. In that case, for each audio sample, we adapt the utility 
model parameters ω further such that model predictions (  ) match actual responses 
(d ) from patient i as closely as possible. Since this learning process is meant to indi-
vidualize the utility model, we call this process personal fitting (or personalization). 
After personalization and expected utility maximization, we have effectively designed 
the evidence-based HA algorithm H(x,θ*)=H(x,Dc,ac,Di,ai). Note that in principle 
the procedure is automated and needs no guesswork. All we need are a HA algorithm 
H(x,θ*) and a database of patient measurements {D,a}. Of course, we recognize that 
in commercial practice the proposed system would need to be integrated into an exist-
ing working practice in such a way that both dispenser and patients derive benefits. In 
Figure 3 we show a dependency graph of the variables in our system. 

Fig. 3:  Bayesian network representation of the evidence-based hearing aid algorithm  
p(y | x,D,a) with listening test results D={Di,Dc} and auditory profiles a={ai,ac}. The 
shaded circles indicate observed variables {x,D,a}; y  is the HA output signal and the 
parameters {θ,ω,ψ} are hidden (unobserved) variables, whose values are determined as 
intermediate results from all patient data.

DEALING WITH UNCERTAINTIES
An often-heard criticism of the machine learning approach is that “it won’t work 
because patient responses are inconsistent”.  Indeed patient responses will often be 
inconsistent (e.g. different responses to the same listening event) which leads to uncer-
tainty about the appropriate utility model and consequently uncertainty about the opti-
mal tuning parameter values θ*.  In fact, there are more sources of uncertainty. For 
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instance, when we compute the expected utility in eq. 2, how do we select a ‘relevant’ 
data set X of audio samples. Each choice of K samples consists of a (small) finite sub-
set of the acoustic world and will be a biased representation leading to uncertainty 
about the ‘true’ expected utility.

The proper treatment of such uncertainties is to model them through probability dis-
tributions. Therefore, our entire system has been developed in a Bayesian probability 
theory context (De Vries et al., 2006). In our probabilistic framework, we can actu-
ally measure and model the uncertainties and take them into account when deciding 
about optimal tuning values. 

Fig. 4: PDF for preferred tuning parameter before (dashed) and after (solid) listening test.

In Figure 4, we show an example of the consequences of taking a probability the-
ory approach to the problem. We took a noise suppression algorithm with one tun-
ing parameter Gmin. On the vertical axis, we plot the probability distribution func-
tion (pdf) for preferred values for Gmin with respect to the expected utility. The util-
ity parameters were initialized such that, before any listening event, all candidate val-
ues for Gmin were equally likely to be preferred by the patient (see the dashed curve).  
Next, we conducted 70 paired comparison events for this algorithm. After training the 
utility model parameters ω to absorb the information from the listening test, the pdf 
for preferred values for Gmin is peaked around 7 dB (see the solidly curved line in Fig-
ure 4). The width of the distribution indicates that the measured data implied some 
uncertainty about this optimal value G*min=7 dB. The data says that, e.g., G*min=8 dB 
would probably also be a good choice, but G*min=14 dB is unlikely to be a preferred 
choice. There is a lot more to be said about the probabilistic approach, but we summa-
rize with the observation that the potential for modelling the inevitable uncertainties 
in the data leads to more informed decisions.  

DISCUSSION
We have discussed a method for designing evidence-based HA algorithms, i.e. HA 
algorithms that take only observable-in-nature variables as inputs (and nothing else). 
Fundamentally, our approach takes as inputs a `regular’ HA algorithm   plus patient 
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measurements  , and produces as output an evidence-based algorithm  . Accordingly, 
this method can be interpreted as a closed-loop fitting-engineering method because 
fitting results   are produced as an intermediate result. The theory deals properly with 
data uncertainties through a Bayesian probability formalism.  

As a final observation, note that our fitting model breaks with the current literature on 
hearing aid fitting models. In the hearing aid literature (and practice), it is common to 
develop direct maps from auditory profiles  to HA algorithm tuning parameters  . For 
instance, fitting rules like NAL and DSL map an audiogram directly to compression 
ratios, (e.g. Dillon, 2001 ch.9, for a review). While useful in practice, such rules suf-
fer from a few serious drawbacks. For instance, the perceived compression depends 
on many algorithm tuning parameters including compression ratios, attack and release 
time constants as well as the presence of other modules in the complete HA algorithm. 
In principle, a new fitting rule should therefore be designed for each new HA algo-
rithm. In our fitting approach, we develop a fitting map  from auditory profiles   to util-
ity parameters  . Thus, the fitting map relates to perceptual characteristics of patients 
rather than to hearing aid algorithms. This is proper: patient measurements say some-
thing about that patient (and in principle nothing about a HA algorithm), and should be 
used to update a model for that patient. Moreover, the perceptual properties of patients 
are more stable than HA algorithms. We do not need to develop a new fitting rule for 
each HA algorithm. The same fitting rule  and utility model   can be used to tune as 
many HA algorithms as we wish. Our system also leaves open the possibility to opti-
mize several dependent HA algorithm parameters simultaneously (e.g., compression 
ratios and attack times).
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