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We propose a single-channel noise suppression scheme based on a statisti-
cal source-model for speech. The scheme is adapted from Ephraim and Malah 
(1984) and Tchorz and Kollmeier (2003) and aims at improving short-time sig-
nal-to-noise ratio (SNR) estimates in different frequency subbands by learn-
ing and classifying auditory-model based speech signal features. First, the 
speech signal is transformed into so-called Amplitude-Modulation-Spectro-
grams (AMS) firstly described in Kollmeier and Koch (1994), which include 
information of both center frequencies and modulation frequencies within 
32-ms analysis frames. Second, the short-time subband SNR is estimated from 
the AMS patterns by a neural network, which was trained based on a large 
speech database. A second neural net obtains final SNR estimates from (i) the 
AMS-based SNR estimates by Tchorz and Kollmeier (2003), and (ii) the esti-
mates derived from the traditional approach by Ephraim and Malah (1984). The 
final SNR estimates can be used to steer a Wiener filter for noise suppression. 
Experimental results indicate a reasonable SNR-estimation accuracy.

INTRODUCTION
Noise reduction remains an important issue largely due to the wide field of applica-
tions of speech signal processing, e.g., in hearing aids, mobile phones and speech rec-
ognition systems, to name only some. A crucial component of noise reduction schemes 
is the estimation of the noise power spectrum. Whereas efficient schemes exist for 
the special case of stationary noise conditions the general case of fluctuating noise 
conditions as encountered in many realistic sound fields is still a challenging prob-
lem. The aim of the study is to enhance single-channel noise suppression based on 
improved SNR estimation. This is realized by the combination of an Ephraim/Malah-
type scheme and the neurophysiologically motivated scheme by Tchorz and Kollmeier 
(2003) Based on a brief description of both schemes, the novel SNR estimation algo-
rithm will be introduced and evaluated.

Algorithm by Ephraim and Malah
The algorithm of Ephraim and Malah (1984) is a well-known minimum mean square 
error (MMSE) short time spectral attenuation (STSA) technique that aims at suppres-
sion of stationary noise. This approach is based on modelling speech and noise spec-
tral components as statistically independent Gaussian random variables. In the follow-
ing the most important characteristics shall be summarised. For the algorithm to work 
properly an estimation of the noise floor is required. Several estimation methods exist 
for this purpose. In this study the following two methods were tested:
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•	 Voice Activity Detector (VAD) described in Marzinzik and Kollmeier (2002) 
is based on an adaptive detection of the power envelope minima of the broad-
band-, lowpass- and highpass-filtered signal.

•	 Detection of spectral minima such as in R. Martin (1994).

The efficient reduction of stationary noise is basically due to the combination of the a 
posteriori SNR, which is an instantaneous SNR estimate and the a priori SNR. The a 
priori SNR is the averaged SNR based on previous estimates. In this way a noticeable 
suppression of "musical tones" is attained. For this type of algorithm an enhancement 
of speech quality but no enhancement of speech intelligibility was found empirically 
by Marzinzik and Kollmeier (2001).

Algorithm by Tchorz and Kollmeier
The algorithm by Tchorz and Kollmeier (2003) is particularly interesting because of its 
neurophysiological and psychoacoustical motivation. It uses the so-called Amplitude-
Modulation-Spectrogram (AMS) by Kollmeier and Koch (1994), which conveys informa-
tion of both center frequencies and modulation frequencies. Those AMS patterns are used 
as features and are classified by a neural network (NN). This kind of pattern recognition 
leads to across-channel processing and results in an analysis and classification of spectro-
temporal information of speech and typical noise. In addition there is neither need of a VAD 
nor the need of assumptions about stationarity of the noise. The algorithm can be charac-
terized by a training and the subsequent testing phase as depicted in Fig. 1.

Fig. 1: Training- and testing phase of the algorithm by Tchorz and Kollmeier (2003).

In the training-phase (upper row of processing blocks in Fig. 1) the signal and the noise 
are separately available. The input parameters for the neural network (NN) are a tar-
get vector and a feature matrix. The target vector consists of the “true” SNR per fre-
quency band which was calculated by the power density spectrum of the signal divided 
by the power density spectrum of the noise in third octave bands. The feature extrac-
tion and the parameters of the NN are described below. In the training phase the NN 
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is trained on a large training corpus to optimally estimate the target SNR from the fea-
ture matrix. In the testing phase (lower row of processing blocks in Fig. 1), the trained 
network estimates the SNR from the feature matrix. Those estimates can then be sub-
sequently used to steer a Wiener filter and to suppress noise.

Fig. 2: Feature extraction: Signal processing to generate AMS patterns.

Feature extraction is shown in Fig. 2. First, the signal is sampled at 16 kHz. It is sub-
divided into segments of 64 samples with an overlap of 60 samples. Each segment is 
divided by the absolute maximum of the segment so that the level of the signal is nor-
malised, and then subjected to a short-time Fast Fourier Transformation (FFT). The 
envelope in each of 15 frequency bands is derived by non-overlapping summation of 
squared FFT-magnitudes across critical bands (ERB resolution) and then subjected to 
another short-time FFT. For this, segments of 128 samples with an overlap of 64 sam-
ples are used. Modulation intensities are summed up across non-overlapping third-
octave bands, resulting in a total of 15 modulation bands. In summary, each 32-ms 
segment of the input signal is represented by one AMS pattern that contains modula-
tion intensities in 15 modulation bands in each of 15 spectral bands. Each AMS pat-
tern forms the feature matrix used by the NN to estimate the SNR of the correspond-
ing signal segment.

Examples of AMS patterns are plotted in Fig. 3. Voiced speech (first panel) and pink 
noise (second panel) clearly show different characteristics. The AMS pattern of the 
voiced speech shows a certain structure presumably due to the periodicity of the funda-
mental frequency and formants, respectively. In contrast the AMS pattern of the noise 
exhibits no specific sub-structure. Only a spectral tilt is noticeable at higher frequen-
cies because the energy of pink noise falls off by 3 dB per octave.

For classification and estimation, respectively, a feed-forward, multi layer perceptron 
by I. Nabney (2004) is used. Its parameters are depicted in Table 1. 225 input neurons 
were used which corresponds to the resolution of the AMS patterns (15x15 ). The 15 
output neurons are used to estimate the SNR per frequency channel.
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Fig. 3: AMS pattern of a 32 ms segment of voiced speech (first panel) and pink noise 
(second panel). Bright and dark areas indicate high and low intensities, respectively.

Parameters Size
input neurons (AMS pattern 15x15  ) 225

hidden neurons 160
output neurons (SNR in 15 bands) 15

activation function of hidden neurons tanh
activation function of output neurons softmax [0,1]

repetitions in the training phase 100

Table 1: Set of parameters for the neural network.

ALGORITHM
The algorithm used in this study combines the two independent algorithms of Ephraim 
and Malah Ephraim and Malah (1984) and Tchorz and Kollmeier (2003). Both algo-
rithms separately estimate the SNR in 15 subbands as described above. Then a sec-
ond neural network is trained that provides a final SNR estimate (SNREMTCH) from 
the Ephraim and Malah estimates (SNREMpost , SNREMapri) and the estimate based on 
the algorithm of Tchorz (SNRTCH). The block diagram of the algorithm is depicted in 
Fig. 4.

Fig. 4: Algorithm to estimate the SNR from the superposition of speech and noise. The 
scheme combines the estimates delivered by the algorithm Ephraim and Malah (1984) 
and Tchorz and Kollmeier (2003). 
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RESULTS
The training and the test data which were presented to the neural networks were taken 
from the “PhonDat” (1995) corpus. The noisy speech was artificially mixed with 16 
noise types taken from various databases with a global SNR of 5 dB, which corre-
sponds to limited segmental range of SNR’s from -10 up to 20 dB. In total, 16 minutes 
speech material was used for training and 10 minutes for testing. To obtain a quantita-
tive measure of the estimation accuracy the mean deviation D is calculated by

 							       (Eq. 1)

where aij, is the “true” SNR in segment i and frequency band j, eij,  is the correspond-
ing estimated SNR and N is the number of signal segments processed. The mean devi-
ations of the combination of the algorithms are compared to the results from the sin-
gle algorithms. The aim of these experiments was to examine if the combination of 
the algorithms enhances the SNR estimation. It was not intended to find the optimal 
parameter set for each algorithm but to verify the improved SNR estimation. Fig. 5 
shows the results using the VAD for the Ephraim/Malah-type algorithm (EM). The 
results for the algorithm after Tchorz are denoted by TCH.

Fig. 5: Mean Deviation. Noise floor estimation: VAD by Marzinzik and Kollmeier 
(2002).

Fig. 6: Same as Fig. 5 but noise floor estimation: Minimum Statistics by R. Martin 
(1994).
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The combination of the algorithms shows the best performance for frequencies below 
4 kHz. The estimation is getting worse towards higher frequencies, probably because 
the NN was insufficiently trained to disregard the worse estimates from TCH at 
these frequencies. Fig. 6 shows the corresponding results for the Minimum Statistics 
approach by Martin (1994). Surely the parameter set of this algorithm could be opti-
mized but still there is clearly an enhancement by combining both estimates.

The next experiment shall underline this thesis. A single speech file was tested and the 
narrow-band estimations in one frequency channel out of 15 are depicted in Fig. 7. It 
is apparent that the combination leads to an enhanced SNR estimation. If one algo-
rithm overestimates the SNR while the other underestimates it, the combination finds 
a balance between both estimates.

Fig. 7: Narrow-band estimation. One frequency channels out of 15 (first panel) plus cut-
out (second panel).

Fig. 8 shows the estimated SNR vs. the true SNR accumulated across all frequency 
bands. The number of occurrences of a combination of true and estimated SNR is plot-
ted on a greyscale. Apart from the obvious spread that was quantified above in Figs. 5 
and 6, a trend to underestimating the SNR is observed.

Fig. 8: True SNR over estimated SNR.
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Finally the hit rate was calculated by subtracting the absolute value of the true SNR 
from the estimated SNR and counting the number of occurrences of values smaller 
than one, three and five dB. Fig. 9 shows the hit rate in percent. 72 % of the data is 
estimated with an error below 5 dB.

Fig. 9: Hit rate divided into sections of one, three and five dB deviation in the SNR.

CONCLUSION
A single-channel noise suppression scheme was proposed based on a statistical source-
model for speech that combines the approaches of Ephraim and Malah (1984) and Tch-
orz and Kollmeier (2003). The combination was found to improve the SNR estimates 
compared to the estimates from each of the two algorithms alone. Although not tested 
in this study, the improved SNR estimates may potentially lead to an enhancement of 
single-channel noise suppression schemes. The aim of this study was not finding the 
optimal parameter set for the state-of-the-art algorithms but rather to exhibit a reason-
able improvement of the SNR estimation by the combination of the algorithms. Nev-
ertheless, it would be interesting to review the results using an optimized set of param-
eters of the contributing algorithms Ephraim and Malah (1984) and Tchorz and Koll-
meier (2003).
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