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In order to better understand the effect of hearing impairment on speech per-
ception in everyday listening situations as well as the still limited benefit of 
modern hearing instruments in this situations, a thorough understanding of 
the underlying mechanisms and factors influencing speech reception in noise 
is highly desirable. This contribution therefore reviews a series of studies by 
our group to model speech reception in normal and hearing-impaired listeners 
in a multidisciplinary approach using “classical” speech intelligibility models, 
functional perception models, automatic speech recognition (ASR) technology, 
as well as inputs from psycholinguistics. Classical speech-information-based 
models like the Articulation Index or speech intelligibility index (SII) describe 
the acoustical layer and yield accurate predictions only for average intelligibil-
ity scores and for a limited set of acoustical situations. With appropriate exten-
tions they can model more audibility-driven and even time-dependent acousti-
cal situations, such as, e.g. the effect of hearing impairment in fluctuating noise. 
However, to describe the sensory layer and suprathreshold processing deficits 
in humans, the combination of a psychoacoustically motivated preprocess-
ing model with a pattern recognition algorithm adopted from ASR technology 
appears advantageous. It allows a detailed analysis of phoneme confusions and 
the “man-machine-gap” of approx. 12 dB in SNR, i.e., the superiority of human 
world-knowledge-driven (top-down) speech pattern recognition in comparison 
to the training-data-driven (bottom-up) machine learning approaches. Finally, 
the cognitive abilities of human listeners when understanding speech can be 
assessed by a “fair” comparison between Human Speech recognition and ASR 
that employs only a limited set of training data. In summary, both bottom-up 
and top-down strategies have to be assumed when trying to understand speech 
reception in noise. Computer models that assume a near-to-perfect “world 
knowledge”, i.e., anticipation of the speech unit to be recognized, can surpris-
ingly well predict the performance of human listeners in noise and may prove 
to be a useful tool in hearing aid development.

INTRODUCTION
The perception of speech in normal and hearing-impaired listeners is mostly per-
formed under non-ideal, i.e. “difficult” acoustical situations that can only be approx-
imated in the laboratory up to a certain extent. Within these limitations, substantial 
progress has been made within the last decades to understand speech reception and the 
specific influence of the various parameters involved. Typically, the speech reception 
threshold in noise is assessed, i. e., the speech-to-noise ratio required to achieve a cer-
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tain percent correct (in most cases: 50%) of the speech material employed. Auditory 
models are then used to predict these results and to test the degree to which we quanti-
tatively “understand” human speech recognition in terms of the acoustical information 
contained in the speech, the sensory processing deficits of the individual listener, and 
his or her cognitive abilities. The current contribution gives an overview of different 
modelling approaches for speech reception in noise by reviewing some of the contri-
butions from the Oldenburg labs to these issues within the last years. A rough classifi-
cation of these models can be given according to their intended level within the com-
munication chain.  Hence, the current contribution is organized to address these dif-
ferent layers of speech perception successively.

THE ACOUSTICAL LAYER. ARTICULATION INDEX PLUS EXTENTIONS
The “classical” approach to model speech recognition under noise uses a spectral 
weighting of the long-term signal-to–noise-ratio and assumes that the total received 
information is the sum of the information transmitted in different frequency channels 
where the amount of information in each frequency channel is given by the respec-
tive signal-to-noise ratio (Fletcher and Galt, 1950). While a vast literature exists on 
the articulation index, its further developments (Speech Transmission Index (STI, see 
Houtgast and Steeneken, 1985) and Speech Intelligibility Index (SII, ANSI, 1997)) 
and its use for predicting speech intelligibility in hearing-impaired listeners, the fol-
lowing parameters are critical in the attempts to accurately predict the individuals 
speech reception ability under a certain acoustical condition with or without a certain 
hearing impairment:

-	 Shape and weighting of spectral bands: Usually, auditory critical bands 
(ERB-Scale) with a weighting given by the SII standard (ANSI, 1997) are 
employed. 

-	 Additivity of external and threshold-simulating noise: To represent the individ-
ual hearing loss, a threshold-simulating noise has to be assumed that is spec-
trally added to the external noise that exists in the respective acoustical situa-
tion. In certain situations it seems justified to assume an amplitude additivity of 
external and internal noise (“coherent addition”) rather than the standard addi-
tivity of power (see below). 

-	 Short-term segmentation: Even though the AI and most of its historical deriv-
atives were only designed for long-term predictions based on the SNR aver-
aged across large periods of time, a short-time-SNR-based “instantaneous AI” 
has the advantage of being able to follow time-varying background noise con-
ditions and characteristics of the target signal (c.f. Kollmeier, 1990, Rankovic, 
1997, Payton and Brainda, 1999, Wagener and Brand, 2005, Wagener et al., 
2006). However, the duration of the time windows for evaluating the SNR, the 
way of averaging across time and the information combination across instances 
in time and frequency are critical for the successful prediction of speech rec-
ognition. In the current study, either the SNR from the complete utterance 
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was used for time-independent predictions or window lengths of 30 ms were 
assumed if indicated.

Methods
A total number of 113 both normal-hearing and hearing-impaired listeners with var-
ious degrees of sensorineural hearing loss participated in data collection (Brand and 
Kollmeier, 2002a). They underwent a clinical tone audiogram, a categorical loudness 
scaling procedure, and – among other tests – the Oldenburg sentence intelligibility test 
both in quiet and in noise using an adaptive SRT determination procedure (Brand and 
Kollmeier, 2002b). The maskers were either an unmodulated ICRA 1 noise (Dresch-
ler et al., 2001) or a modulated ICRA 5-250 noise where the maximum pause duration 
was limited to 250 msec (Wagener et al., 2006). The noise level was always set to be 
close to the “medium” categorical unit from loudness scaling.

Results & discussion
Figure 1 shows the obtained speech reception threshold (SRT) in quiet for the Old-
enburg sentence test (Wagener et al., 1999) as a function of the predicted SRT. Obvi-
ously, the empirical results coincide quite well with the predictions that are derived 
only from the audiogram (r = 0,95, 69% of all points within the confidence region 
given by the accuracy of the test).

Figure 2 gives the results for the same subjects and the same speech test but measured 
for stationary ICRA 1 noise. Here, the SRT prediction is no longer dominated by the 
large variations in the audiogram as in figure 1, but rather comparatively small varia-
bility across subjects occur. This variability is not very well predicted by the SII which 

Fig. 1: Speech reception thresholds 
(SRT) obtained for 113 normal and 
hearing-impaired subjects with the Old-
enburg Sentence test in quiet (ordinate). 
The predictions obtained with the SII 
are given on the abscissa (r=0,95).

Fig. 2: As Fig. 1, but with continu-
ous speech-shaped background noise 
(ICRA1) as background. The predic-
tions obtained with the SII are given on 
the abscissa (r=0,95).
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is based on the audiogram and the external masking noise. Note that the predictions 
employed here base on the assumption of a coherent addition between external mask-
ing noise and individual threshold-simulating noise. If only the maximum from any 
of both quantities or an incoherent addition would be used, the prediction would be 
even worse. The fact that the best predictions are achieved with coherent addition may 
be justified by the observation, that even a subtle masking noise close to the absolute 
threshold already has a detrimental effect to signal detection.

Taken together, the time-independent SII reaches a reasonable well prediction accu-
racy for the SRT in quiet which, however, might not yield much additional informa-
tion than the audiogram. The situation is different with the supra threshold tests in 
noise where the limits of the current SII models becomes clear. It is highly probable 
that the recruitment phenomenon and other suprathreshold processing deficits will be 
responsible for the observed deviations between empirical SRT data and audiogram- 
and external noise based SRT predictions. This finding calls for more refined model-
ling approaches (see below). 

As already pointed out above, a great challenge of the prediction models is to correctly 
predict speech reception thresholds in fluctuating noise and the listener´s ability to “lis-
ten into the dips”. Fluctuating noise provides a larger difference in SRTs between nor-
mal and hearing-impaired listeners. However, the appropriate prediction of the empir-
ical results has not been very satisfactory in the past. We therefore compared four dif-
ferent model versions derived from the SII and implemented them as short-term-pre-
dictions based on short segments that vary with centre frequency (Meyer and Brand, 
2007):

I.) SII (ANSI, 1997): The starting point is the standard SII which is based on the long-
term spectra of speech and noise. The audibility in 21 frequency bands is calculated 
and the weighted sum (band importance function depending on test material) over all 
bands is calculated. Consequently, the original time-independent version of the SII is 
insensitive to temporal fluctuations of the input signals, as the standard is based on the 
long-term spectra only.

II.) Frequency independent fluctuations of the noise (Brand and Kollmeier, 2002a): 
In a first step towards a short-term SII, a version proposed by Brand is used which 
assumes fluctuations of the overall level of the noise whereas the frequency spectrum 
of the noise is regarded as being constant. For every level occurring in the noise level-
histogram an SII value is calculated. Finally the weighted (with the rate in the level-
histogram) mean over all SII values is calculated.

III.) Frequency dependent fluctuations of the noise (Rhebergen et al., 2005): In the sec-
ond step, also the frequency dependency of the fluctuations of the noise are considered. 
This is done by using the model proposed by Rhebergen et al. This model proposes a 
pre-processing of the input signals where the signals are first filtered into 21 frequency 
bands. In every frequency band the envelope is estimated via the Hilbert-transform. In 
frequency dependent time windows the instantaneous intensity is estimated. At last the 
mean over all SII values is calculated. A noise with the long-term spectrum of speech 
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is used as representation of the speech signal, as it was done by Rhebergen et al. Since 
this speech simulating noise shows no fluctuations, this approach does not take fluc-
tuations of the speech spectrum into account. 

IV.) Frequency dependent fluctuations of speech and noise: In the last step, also the 
fluctuations of the speech are considered (Meyer and Brand, 2007). This is achieved by 
taking real speech signals (sentences from the sentence test) as input. For every speech 
signal the SRT is calculated with the model according to Rhebergen et al. (2005) and 
then the mean over all SRTs is calculated. This requires much more computation time 
than the other versions of the model. The only difference to model version III) is that 
speech signals are used as input and that the averaging takes part across much more 
speech samples.

In each version of the model, every resulting SII value is transformed into an intelli-
gibility value. The speech level is then adjusted to achieve an SII of 0.133. This SII 
value corresponds to the Speech Reception Threshold (SRT). The subject's hearing-
loss is included in the SII as described in the standard.

Figure 3 shows scatter plots of the results for all model versions used. On the abscissa 
the predicted SRT values are shown. On the ordinate the observed SRT values are 
shown. The solid diagonal lines represent perfect predictions of the measured data. 
The dashed lines around the diagonal line show a deviation of 4dB from perfect pre-
diction, which corresponds to the 95% confidence interval given by the measurement 
accuracy. Furthermore for each plot the resulting correlation between observed and 
predicted SRT is displayed.

Fig. 3: Observed and predicted Speech reception thresholds (SRT) for four differ-
ent model versions using fluctuating speech-simulating fluctuating background noise 
(ICRA 5-250).
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The correlation for the standard SII is r=0.48. For the three other model versions the 
correlation is about r=0.7. This means that the consideration of some temporal infor-
mation in terms of the frequency independent fluctuations of the noise (Brand and 
Kollmeier, 2002a) results in a higher correlation between the predicted and the meas-
ured SRTs. However, considering further temporal information in terms of the fre-
quency dependent fluctuations of the noise (Rhebergen et al. 2005) and the frequency 
dependent fluctuations of the noise and the speech (extension presented in this study) 
does not result in a significantly higher correlation.

On the other hand, the consideration of more temporal information yields a closer 
alignment between predictions and observations even though the correlation does not 
improve. Although the SII was not designed to predict SRTs in fluctuating noise, it 
yields good results for some subjects, i.e. about 50% of the predictions are within the 
4dB interval. If we consider the frequency independent temporal information (model 
version based on Brand and Kollmeier, 2002a) the correlation is higher as for the 
SII (SII: r=0.48, Brand: r= 0.73), but there are less points close to the diagonal, only 
about 4% of the predictions are within the 4dB interval. If we also take the frequency 
dependent fluctuations of the noise into account (model version based on Rhebergen 
et al. (2005)) the correlation is slightly smaller than for the version from Brand and 
Kollmeier, 2002a (Brand: r=0.73, Rhebergen: r=0.70). However, more predictions are 
close to the diagonal, i.e. about 8% of the predictions are within the 4dB interval. If the 
fluctuations of the speech signal is accounted for by the extension introduced in this 
study, the correlation r=0.71 is between the version from Brand and Kollmeier (2002a) 
and Rhebergen et al., (2005). Even though the predictions for some subjects show 
a considerable deviation from the observed SRTs, the predictions for most subjects 
matches the data quite well (about 50% of the predictions are within the 4dB interval). 
This model version therefore compares favourably to the other model versions that 
achieve a match of 4% and 8%, respectively. However, this improvement of prediction 
accuracy is connected with a much higher amount of computational complexity. 

Conclusions
As a conclusion for the acoustical level in modelling speech reception, it is save to 
say that articulation index-based approaches (AI, STI, SII and modifications) appear 
to work well for threshold-dominated prediction tasks, i. e., for subjects with a mild 
to moderate hearing loss, for predictions in quiet and the average effect of continuous 
noise. However, the SRT in stationary noise is only partially predictable for hearing-
impaired listeners since the variability among listeners seems to be highly influenced 
by non-acoustical factors (such as, e. g. sensory effects and cognitive effects). The 
short-term model extension evaluated here for fluctuating noise seems to work well 
if spectro-temporal information of both signal and noise is accounted for within the 
approach. Taken together, modelling the acoustical level appears to be quite success-
ful in assessing the speech information actually present in the acoustical signal. How-
ever, since this approach assumes a perfect sensory and cognitive system of the lis-
tener, it can only cover individual differences to a certain degree (mostly by account-
ing for the individual absolute threshold). Hence, the subsequent stages in auditory 
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processing should be included in the modelling chain to achieve a better understand-
ing of the whole system.

THE SENSORY LAYER: MODEL OF “EFFECTIVE” SIGNAL PROCESSING
A more refined approximation of modelling speech reception should take into account 
properties of the signal processing in the normal and hearing-impaired auditory system 
that reflect sensory processes in audition, i.e., the  first  steps of the physiological trans-
formation of sound into neural activity and the neural representation of sound in the 
auditory system. Hence, the sensory layer can be thought of as an intermediate stage 
between the pure acoustical layer and a (perfectly operating) cognitive stage. This 
sensory layer can therefore be characterized by auditory models of “effective” sig-
nal processing that describe the neural transformation from the acoustical signal into 
some internal neural stage. We assume that the imperfections of the sensory processes 
involved in human auditory signal processing cause the main limitation in recognizing 
and discriminating speech sounds. These imperfections should be influenced by audi-
tory signal processing properties that are relevant for human perception of sound, such 
as, e. g., bandwidth of the “effective” auditory critical bands, compression and adap-
tation in the auditory system, fine structure versus envelope cues and binaural inter-
action. The output of the sensory layer is fed into a cognitive layer that exploits the 
“internal representation” of speech signals in a perfect way by utilizing a-priori knowl-
edge. This layer therefore can be modelled as an “optimal detector” which is assumed 
to include the whole “world knowledge” of the observer. In a more realistic approach, 
the cognitive layer can be approximated by a speech recognizer (see below).

One approach to the sensory layer that aims at describing the binaural interaction 
and binaural noise reduction in normal and hearing-impaired listeners during speech 
reception tasks was proposed by Beutelmann and Brand (2006). It is based on previ-
ous work by vom Hövel (1984) and a similar approach by Zurek (1990). A modifi-
cation of the equalisation and cancellation (EC-) model of binaural interaction intro-
duced by Durlach (1963) was used as a front end to an SII-type speech intelligibility 
prediction method.

A more direct way of addressing the sensory component in modelling speech reception 
was pursued by Holube and Kollmeier (1996) who used an “effective” signal process-
ing model (Dau et al., 1996) of the normal and hearing-impaired listener as a front 
end to a standard Dynamic-Time Warp (DTW) speech recognizer. By determining the 
distances between a test utterance and training utterances “on a perceptual scale” (i.e., 
at the output of the “effective” signal processing model), the utterance with the least 
distance is taken as the recognized one. The “effective”  auditory perception model 
emplyed (Dau et al,.1996) has been shown to model many different psychoacoustical 
experiments with different masking conditions as well as modulation detection tasks 
(Dau et al., 1997). 

This approach of combining a perceptual signal processing model (representing the 
sensory layer) with a DTW speech recognizer (representing the cognitive layer) was 
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further developed by Jürgens et al. (2007). They used for validation the context-free 
speech database “Oldenburg Logatome Corpus (OLLO)” (Wesker et al., 2005). It con-
tains 70 vowel-consonant-vowel (VCV) and 80 CVC logatomes with the outer pho-
nemes being identical. Each logatome was recorded 18 times by the same speaker spo-
ken in 6 different speech articulation styles: “slow”, “normal”, “fast”, “loud”, “quiet” 
and “questioning”. The use of this corpus allows systematical investigations of pho-
neme recognition rates and confusions. At the same time it avoids that human listen-
ers can use any semantic knowledge for intelligibility. 

Human speech recognition (HSR) performance with this speech corpus was measured 
with 10 clinically normal-hearing subjects. Their age varied between 19 and 37 years. 
The intelligibility of 150 logatomes was measured in a sound insulated booth at dif-
ferent signal-to-noise-ratios. All recordings were taken from the OLLO database and 
were spoken by a single German speaker with speech variability “normal”.

Jürgens et al. combined the Dau et al. (1997) model with a standard DTW speech 
recognizer to mimic the decision process in a closed speech intelligibility test. The 
level of the template speech waveform is set to 60 dB SPL and both the background 
ICRA-noise and a hearing threshold simulating noise for normal-hearing listeners is 
added. The resulting waveform is filtered using a gammatone filterbank (Hohmann, 
2002) with 27 frequency channels between 236 Hz and 8 kHz equally spaced on an 
ERB-scale. The filter outputs are half-wave rectified and low-pass filtered at 1 kHz in 
a hair cell model. After processing with five consecutive adaptation loops with time 
constants chosen as in (Holube and Kollmeier, 1996) the signal is again filtered by a 
modulation filterbank that consists of 4 modulation filters: one low pass at 2.5 Hz and 
three band passes with center frequencies of 5, 7.5 and 10 Hz and bandwidths of 5 Hz, 
respectively. The outcome is an “internal representation“ (IR) of the time signal. The 
test signal superposed with a noise waveform is pre-processed in the same way by the 
perception model. Note that “noise” in this scheme means running ICRA background 
noise added to a running hearing threshold simulating noise for normal-hearing sub-
jects. All samples of the training vocabulary were equalized to the same length before 
processing by attaching silence. This was done to rule out a possible discrimination 
cue due to the individual length of the speech recordings.

The IR of  the template and the IR of the test signal are the inputs of the speech rec-
ognizer, that calculates the Euclidian distance between the two whereas a DTW algo-
rithm (Sakoe and Chiba, 1978) performs local stretching and compression of the time 
axes of both IRs in order to achieve a minimal distance. The logatome with the least 
distance is chosen as the recognized one. The response alternatives given to the model 
were the same as for HSR.

Two model configurations were realized in this study:
•	 In configuration A there were 5 IRs per logatome as templates. None of the 5 

original recordings was identical to the tested time signal. The logatome that 
yielded the minimum mean distance of all 5 IRs was chosen as the recognized 
one.
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•	 Model configuration B contained one IR per logatome as a template whereas 
the original speech material was identical to that of the test signal. Thus the 
resulting IRs differ only in the initially added noises.

There are many combinations possible to select speech material from OLLO for per-
forming these model calculations. For these two model configurations the speech rec-
ognizing task was calculated 10 times using each time a new combination of speech 
recordings spoken by the same speaker.

Model predictions and comparison with listening tests
The resulting psychometric functions of the automatic speech recognition (ASR) 
experiments are shown in Fig. 4. Additionally the fitted psychometric function for 
normal-hearing subjects from HSR is given as a reference. Configuration A results in 
a SRT of 1,3 dB calculated from the fitted psychometric function which is more than 
13 dB higher than that in HSR. It was assumed that in this model configuration, which 
closely resembles ASR tasks, 100 % model recognition rate can never be achieved 
even without background noise. This is due to the inherent speech variability that is 
still a problem in ASR tasks (Lippmann, 1997). To include this fact a third parame-
ter (the difference between 100 % and the saturation hit rate of the model) was intro-
duced into the fitting routine. With a slope of 5,8 %/dB the reference slope is repro-
duced quite well.

Fig 4: Measured (Human Speech Recognition with normal-hearing subjects, solid 
curve) and predicted psychometric functions for model configurations A and B derived 
with utterances of logatomes in ICRA-noise as a function of SNR.

A much better prediction of the normal-hearing psychometric function is achieved 
with model configuration B. The order of CVC and VCV as well as the upper part of 
the reference curve is modelled correctly. 100 % recognition rate is reached at 10 dB 
SNR. The slope (8.9 %/dB) deviates slightly from the reference, the SRT (-7.6 dB) is 
much closer to human listeners SRT, but still there is a gap of 4.6 dB between them. 

Our results show that the psychometric function can only be predicted well if iden-
tical speech test and training utterances are used as inputs for the model. This indi-
cates that the variability across speech items is not a crucial factor for understand-
ing speech intelligibility in normal-hearing subjects because they can recognize an 
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unknown speech waveform that roughly resembles the “expected” template as well as 
if they would have perfect a priori knowledge of the waveform to expect. The model, 
on the other hand, is not able to “generalize” the a priori knowledge of a known wave-
form to a similar utterance. Hence, a model that does not hold the exact speech record-
ing in its training vocabulary performs much worse that a model with perfect a pri-
ori information.

Conclusions
As a conclusion for the sensory layer we can state that the prediction of speech recep-
tion appears to be quite successful if an “ideal detector” is assumed, i. e., a perfect 
world knowledge of the word to be expected. In such a configuration, an “effec-
tive model” of auditory signal processing seems to predict the availability of speech 
cues quite well. This is markedly different from the speech intelligibility index-based 
approach discussed above because speech discrimination is directly predicted from 
the speech signal without any prior normalisation of the intelligibility function for the 
respective speech material to be expected. On the other hand, the assumption of a per-
fect world knowledge (i. e., previous knowledge of the word to be expected as a kind 
of “Wizard of Oz” experiment) is only a very rough model of the cognitive system and 
does not take into account any individual differences in cognitive processing abilities. 
This calls for a better modelling of speech reception including the cognitive level.

THE COGNITIVE LAYER: A “FAIR” MAN-MACHINE COMPARISON
Several approaches exist in the literature to examine the influence of inter-individ-
ual cognitive factors on obtained speech reception thresholds for normal and hear-
ing-impaired listeners. The Linköping group (Larsby et al., 2005), for example, could 
demonstrate a high correlation between speech reception thresholds in noise and cog-
nitive test outcomes, such as tests for assessing the individual working memory and 
maximum cognitive load by, e. g., performing a dual task memory span experiment. 
Based on their work, a cognitive test was included in the Hearcom auditory profile 
which is currently under consideration in a multicenter trial (Dreschler et al., 2007). 
However, in order to model the cognitive component in a more quantitative way and 
in order to connect this to models of the acoustical and sensory level (as given above), 
one will have to exchange the “ideal observer” concept outlined above with a “real-
istic observer” concept which includes a realistic pattern recognition model and var-
ious training procedures to account for priori knowledge in a scalable way. The best 
currently available pattern recognizers for speech stimuli are highly developed within 
the field of automatic speech recognition (ASR) so that a model of human speech rec-
ognition (HSR) based on elements of automatic speech recognition appears to be a 
meaningful approach. Since human listeners outperform ASR systems in almost all 
experiments (Lippmann, 1997), ASR may also profit from auditory feature extraction 
as proposed in Kleinschmidt, (2003) or by using models of human word recognition 
(Scharenborg, 2005). In addition, a comparison between HSR and ASR should provide 
an appropriate basis for advancing such models of human speech recognition. Ideally, 
such a refined model should not only utilize bottom-up processes (such as, transform-
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ing the acoustical input signal into an internal representation which is recognized by a 
more or less ideal pattern recognizer), but should also incorporate aspects of top-down 
processing (such as, e. g. using learned patterns and a hypothesis-driven pattern recog-
nition that may be influenced by the individual´s cognitive competence and working 
memory limitations) in order to model speech recognition in a more adequate way. 

As a first step into this direction, a “fair” comparison of human and machine phoneme 
recognition was achieved by Meyer et al. (2007): For similar experimental conditions, 
the OLLO speech database as described above with non-sense syllables was used for 
ASR and HSR tests. Hence, human listeners were not able to exploit context knowl-
edge and language models in ASR could be disregarded. This helps to decouple the 
influence of two major sources of errors in ASR, namely the feature extraction stage 
and the back-end. Different error patterns of the confusions of phonemes should help 
to identify sources of errors and to improve ASR feature extraction. It was also investi-
gated whether the information contained in ASR features is sufficient for human listen-
ers to recognize speech. Therefore, feature vectors used internally by the speech rec-
ognizer were decoded to acoustic speech tokens. The most common features in ASR 
(Mel Frequency Cepstral Coefficients / MFCCs) were resynthesized to audible signals 
which were presented to human test subjects. 

Since the calculation of MFCCs results in a loss of information (as, e .g., phase, spec-
tral resolution and fundamental frequency), these signals sound artificial and tinny 
(like synthesized speech). For example, the speaker’s identity or even gender are usu-
ally not recognizable. Nevertheless, the resynthesized logatomes are perfectly under-
standable in the absence of noise. To allow for a valid comparison, the presented rec-
ognition scores were obtained with noisy speech (0 dB SNR). By adding noise, redun-
dant information in the speech signal is masked, so that intelligibility is potentially 
decreased in contrast to an unprocessed signal. The reduction of redundancy might 
be particularly critical in the presence of speech intrinsic variabilities as, for exam-
ple, regional dialect. 

In order to decode the features to an acoustic speech signal, a linear neural network 
trained with the OLLO training set is used to construct the spectral envelope from the 
cepstral coefficients. Additional information such as voicing or fundamental frequency 
fg is not used for the calculation, since this would give human listeners an unfair 
advantage over ASR. Hence, an artificial excitation signal has to be used. Pilot experi-
ments showed that intelligibility is highest when a pulse train with fg = 130 Hz is used 
as excitation signal (instead of noise or a mixed noise-pulse signal). In a final step, the 
spectral envelope and the artificial excitation signal are combined. This algorithm was 
kindly supplied by the Katholieke Universiteit Leuven (Demuynck, 2004).

During the extensive HSR experiments, the original signals in speech-shaped noise 
at an SNR of -10 dB were also presented as a reference condition. Five normal-hear-
ing listeners participated in the tests. Their task was to identify the middle phoneme in 
OLLO VCV and CVC utterances. The recognition rates were compared to ASR results 
obtained with a standard HMM recognizer with MFCC feature extraction (see Fig. 5).
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Fig. 5: HSR and ASR phoneme recognition scores over SNR.  The large gap between 
HSR and ASR (a) is reduced if human listeners are provided with only the information 
contained in ASR features (b). The gap expressed in terms of the SNR may be attrib-
uted to either the sensory or cognitive differences between HSR and ASR (labels 1 and 
2, respectively).

A direct comparison of ASR and HSR performance shows that human speech recogni-
tion is superior to the ASR system under equal conditions, as displayed in Fig. 5 (from 
Meyer et al.,  2007). The total HSR and ASR accuracies at an SNR of -10 dB are 74.0% 
and 34.0%, respectively, which corresponds to a relative increase of the word error rate 
(WER) of 154% (dotted line a). The gap narrows if the information for human listen-
ers is limited to the information content of MFCCs: For resynthesized signals at 0 dB 
SNR, the recognition score is 73.8% and the corresponding ASR accuracy is 68.5%, 
resulting in a WER increase of 20.0% (dotted line b).The SNRs for both HSR condi-
tions were chosen so that average recognition rates are similar. The choice of SNRs 
was based on the presentation of only few test lists to one human listener and proved 
to be reasonable for other test subjects as well, as the overall accuracies are very close 
to each other: The average scores were 73.8% (resynthesized signals) and 74.0% (orig-
inal signals), respectively. Therefore, the information loss caused by MFCCs can be 
expressed in terms of the signal-to-noise ratio, i.e. the SNR of resynthesized signals 
has to be 10 dB higher in order to obtain similar recognition performance (label 1 in 
Fig. 5). The difference between HSR with resynthesized signals and ASR is 3.2 dB 
(label 2 in Fig. 5). The results can be interpreted as follows: The total gap between 
human and automatic speech recognition in terms of SRT amounts to 13.2 dB (i. e. 
ASR at +3.2 dB yields the same recognition score as HSR at -10 dB SNR). This gap 
can be separated into a “sensory part”, i. e. the gap between HSR for natural speech 
and for re-synthesized speech (i.e., label 1) which amounts to 10 dB. It is due to non-
ideal representation of the speech signal as the input pattern for the speech pattern rec-
ognition model. The remaining gap of 3.2 dB between HSR for resynthesized speech 
and ASR (i.e., label 2) can be interpreted as the “cognitive” gap, i. e., the advantage 
of human “top-down”-processing over the statistical-model-based pattern recognition 
in the ASR. Even though the HMM speech recognizer employed here is only a poor 
model of the human cognitive system in recognising speech, this comparison still helps 
to quantitatively assess the effect of cognition for speech recognition in noise. Inter-
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estingly, the 3.2-dB gap found here is in the same order of magnitude as the difference 
between native and non-native listeners found in SRT measurements with sentences 
(for example Warzybok et al., 2007). 

As a conclusion for the cognitive level, we can say that no promising “Ansatz” exists 
yet to adequately model the cognitive level in speech recognition. Hence, more work 
will have to be invested to achieve a satisfactory, complete model that will eventu-
ally also include individual differences in cognitive processing for the prediction of 
speech reception thresholds. However, the comparison between the perceptual, infor-
mation-driven approach (bottom-up) and the world knowledge- and hypothesis-driven 
approach (top-down) pursued here appears to be a reasonable first step.

GENERAL CONCLUSION
As a very rough estimate of how much we already understand about speech recogni-
tion with our model approaches at different layers, we could state:

-	 On the acoustical layer using prediction methods that are based on various 
speech-to-noise-ratio measures (such as the articulation index and speech intel-
ligibility index plus derivatives) we already achieve a very high prediction 
quality. The methods are already very elaborated for a long-term speech intel-
ligibility predictions, for (nearly) linear systems and for auditory-threshold-
dominated speech perception tasks (i. e., speech perception in quiet for hear-
ing-impaired listeners). A short-term extention appears promising if both the 
time-varying speech and noise spectrum is adequately accounted for. 

-	 At the sensory layer, the models range from binaural interaction models com-
bined with SII-based speech intelligibility prediction up to models with a 
microscopic analysis of auditory processing involved in speech perception. 
Good progress has been made in modelling normal-hearing to moderate hear-
ing- impaired listeners in (nearly) stationary noise conditions and assuming a 
“perfect” world knowledge. However, a wide range of interesting questions 
still have to be solved, such as, e.g. an appropriate characterization of the effect 
of suprathreshold processing deficits in hearing-impared listeners.

-	 With respect to the cognitive layer, the approach for a “fair” comparison 
between human and machine speech recognition seems to be a first reasonable 
approach, especially if the inclusion of a different degree of “world knowledge” 
and training is accounted for. However, no quantitative model is yet achieved 
that would relate e. g. the cognitive load and processing costs involved in cog-
nitive processing to the acoustical and the perceptual level. Hence, considera-
ble amount of work still has to be invested here.
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