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We examined the responses of neurons in primary auditory cortex (A1) to pho-
netically labeled speech stimuli. Sentences were taken from the TIMIT data-
base and chosen to represent a diversity of male and female speakers. We 
presented these stimuli to awake ferrets while recording the activity of iso-
lated A1 neurons. For analysis, we segmented the continuous speech samples 
into sequences of phonemes, which represent the smallest significant units of 
speech. We characterized the response properties of each neuron as the peri-
stimulus time histogram (PSTH) response to each phoneme. Across a popula-
tion of A1 neurons, we observed distinct patterns of phoneme selectivity that 
may provide a neural basis or low-level phoneme discrimination. We investi-
gated how features of speech are encoded in A1 using a method for reconstruct-
ing the speech stimulus from the neural population responses. Stimuli were 
reconstructed using a linear spectro-temporal model to map the response to the 
stimulus spectrogram. We compared the accuracy of reconstruction across pho-
nemes.  One important factor involved in stimulus reconstruction is the pres-
ence of correlations in complex natural stimulus such as speech. Prior knowl-
edge of regularities in the stimulus can benefit reconstruction in noise and when 
spectro-temporal coverage is limited. We studied the influence of prior knowl-
edge of stimulus correlations, noise and spectro-temporal coverage on recon-
struction accuracy in neural data and in simulation.

INTRODUCTION
The general issue of the neural representation of complex patterns is common to all 
neuroscience and has been investigated in many sensory modalities. In the visual sys-
tem, recent studies have shown that responses of approximately 100 cells in the infe-
rior temporal cortex are sufficient to account for the robust identification and catego-
rization of several object categories. In the auditory system, a recent study has shown 
that neurometric functions derived from single unit recordings in the ferret primary 
auditory cortex closely parallel human psychometric functions for complex sound dis-
crimination (Walker et al., 2006). An important aspect of our approach in the present 
study is the inclusion of temporal features of the response in the analysis. This is cru-
cial because phonemes are spectro-temporal patterns, and hence analyzing their neu-
ral representation at a single cell or ensemble level requires consideration of the inter-
actions between the stimuli and the intrinsic dynamics of individual neurons.

In the present study, we recorded responses of A1 neurons to a large number of Amer-
ican English phonemes in a variety of phonemic contexts and derived from many 
speakers. Our results demonstrate that (I) time-varying responses from a relatively 
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small population of primary auditory cortical neurons (< 100) can account for distinc-
tive aspects of phoneme identification observed in humans (Miller and Nicely 1955), 
and that (II) long-established acoustic features of phonemes are indeed explicitly 
encoded in the population responses in A1.

Fig. 1: Neuronal responses to phonemes in continuous speech (A) The spectrograms of 
all /ɛ/ vowel exemplars are extracted and averaged to obtain one grand average auditory 
spectrogram (bottom left). In this and following average spectrogram plots, red areas indi-
cate regions of higher than average energy and blue regions indicate weaker than aver-
age energy. The corresponding PSTH response to /ɛ/ is computed by averaging neural 
spike rates over the same time windows (bottom right).  (B) The spectro-temporal recep-
tive field (STRF) of a neuron as measured by normalized reverse correlation. Red areas 
indicate stimulus frequencies and time lags correlated with an increased response, and 
blue areas indicate stimulus features correlated with a decreased response. The neuron's 
BF is defined to be the excitatory peak of the STRF (red arrow). The modulation transfer 
function (MTF) is computed by taking the absolute value of the 2-D Fourier transform 
of the STRF. We then collapse along the temporal or spectral dimensions (known also as 
the rate and scale) to obtain the purely spectral (sMTF) or temporal (tMTF) modulation 
transfer functions. The best scale (proportional to the inverse of bandwidth) of an STRF 
is defined as the centroid of the sMTF (in "cycles/octave"), whereas "speed" or best rate 
of the STRF is defined as the centroid of the tMTF (in Hz). 

The analysis of the categorical representation of phonemes across a neuronal popula-
tion presented in this paper remains largely model-independent in that only relatively 
raw response measures (e.g., peri-stimulus time histograms, PSTHs) are used in the 
computations and illustrations. The one key departure from this rule is necessitated by 
the desire to organize the display of the population responses according to their best 
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frequency, spectral scale, and temporal dynamics. These response properties are quan-
tified using the measured spectro-temporal receptive field (STRF) model (Theunissen 
et al., 2001, Klein et al., 2001). The key questions we address here concern the nature 
and location of the neural representations of different phonemes and, more specifically, 
whether the neural responses of the primary auditory cortex (A1) are sufficiently rich 
to support the phonetic discriminations observed in humans and animals.

METHODS
Physiology: Spiking activity was recorded from isolated single neurons in primary 
auditory cortex of awake, passive ferrets. The experimental preparation and electro-
physiological methods are described in detail in Klein et al., (2006). Speech stim-
uli were phonetically transcribed continuous speech from TIMIT database (Seneft 
and Zue, 1988). The samples were chosen to represent a diversity of male and female 
speakers. Thirty different sentences spoken by 15 male and 15 female different speak-
ers were used to represent a variety of speakers and contexts while keeping the time of 
neural data acquisition suitably short. Figure 1 illustrates the spectrogram of one such 
sentence, and the way responses for a given phoneme (/eh/) are averaged. Neurons 
spectro-temporal receptive field (STRF): The STRF is a linear model of the manner in 
which auditory cortical neurons respond to complex sounds.  It is estimated using nor-
malized reverse correlation techniques from any sound-response pairs (Theunissen et 
al., 2001). Figure 1B illustrates the STRF of one such neuron. We measured several 
tuning properties from each STRF: Best frequency (BF) was defined as the largest pos-
itive peak value of the STRF along its frequency dimension. The STRF scale and rate 
were estimated from the 2-D modulation transfer function (MTF) (Fig.1B). The MTF 
is the 2-D Fourier transform of the STRF that is then collapsed along its temporal or 
spectral dimensions (known also as the rate and scale) to obtain the purely spectral 
(sMTF) or temporal (tMTF) modulation transfer functions (Fig. 1B). The best scale 
(related to the inverse bandwidth) of an STRF is defined as the centroid of the sMTF 
(in "cycles/octave"), whereas "speed" or best rate of the STRF is defined as the cen-
troid of the tMTF (in Hz), as illustrated in Fig. 1B.

RESULTS  
Average phoneme representations
To appreciate the unique response patterns evoked by different phonemes, and in par-
ticular, in order to highlight the acoustic features enhanced in the neural representa-
tion, it is best to view the ordered activity of the entire population simultaneously. This 
ordering depends entirely on the neuronal tuning properties to be emphasized. In pri-
mary auditory cortex, unlike in the auditory nerve, receptive fields (tuning curves or 
STRFs) exhibit systematic variations along a myriad of feature axes including best fre-
quency (BF), bandwidth, asymmetry, and temporal modulations (Simon et al., 2007). 
Here we consider the ordered representation of phoneme responses along three dif-
ferent dimensions: best frequency, best scale, and best rate (Figure 1B). We used the 
speech-based STRFs to estimate these parameters for each neuron.
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Encoding of vowels

Fig. 2: Population response to vowels. (A) I. Average auditory spectrogram of 12 vow-
els organized approximately according to their open-closed and front-back articulatory 
features. (II, III, IV): Average PSTH responses of 90 neurons to each vowel. Within 
each heat map, each row indicates the average response of a single neuron to the cor-
responding phoneme. Red regions indicate strong responses, and blue regions indicate 
weak responses. The average PSTH responses are sorted by neurons’ best frequency (II), 
best scale (III) and best rate (IV) to emphasize the role of that parameter in the encod-
ing of each vowel. (B) I. Each vowel is plotted at the centroid frequency, rate and scale 
of its average neuronal population response. The centroid values are calculated from 
the average PSTH responses sorted by the corresponding parameter (2A). Open vowels 
are shown in red, Closed vowels in blue, Front vowels with hollow font and Back vow-
els with solid font. To visualize the contribution of each tuning property to vowel dis-
crimination, the location of each vowel is also shown collapsed in 2-D plots of (II) rate-
scale, (III) rate-frequency and (IV) scale-frequency.

Population responses to 12 American-English vowels are summarized in Fig. 2. Pan-
els in the top row (Fig. 2A-I) display the average auditory spectrogram of each vowel 
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computed from all of its samples encountered in the speech database. The vowels are 
organized according to their articulatory configurations along the Open/Closed and 
Front/Back axes (Ladefoged, 2006), as illustrated at the top of Fig. 2: /o/, /ɔ/, /ɑ/, /ʌ/, 
/æ/, /ɛ/, /e/, /ə/, /i/, /ɪ/, /ɨ/, /ʉ/. The three middle vowels (/ɛ/, /e/, /ə/) are tightly clus-
tered near the midpoint of the Front/Back and Open/Closed axes, and are difficult to 
order accurately along this 1-dimensional representation of the vowels.

The averaged spectra (top row) reveal that Mid/Back vowels (/o/, /ɔ/, /ɑ/, and /ʌ/) 
have relatively concentrated activity at low to medium frequencies (~0.4 - 2 KHz), 
whereas Front vowels sometimes have two peaks spaced over a larger frequency range 
(~0.3 and ~4 KHz). This is consistent with the known distribution of the three form-
ants (F1, F2, and F3) in these vowels (Ladefoged, 2006), namely, that they have F1 
and F2 that are closely spaced, creating compact single broad peak spectra at interme-
diate frequencies (reminiscent of the center-of-gravity hypothesis of Chistovich and 
Lublinskaya, 1979).  As the vowels become more “Front”ed, the single peak broad-
ens and splits (/æ/ to /ə/). Continuing this trend, Front/Closed vowels (/i/, /ɪ/, /ɨ/, /ʉ/) 
exhibit relatively narrow and well separated formant peaks with F1 at low and F2 at 
high frequencies. 

These averaged phoneme spectra are broadly reflected in the response distributions 
ordered along the BF axis; neurons with BFs matching regions of high energy in a 
phoneme spectrum tend to give strong responses to that phoneme (Fig. 2A-II). How-
ever, notable differences of unknown significance exist such as the relative weak-
ness of the low BF peaks in /e/ and /ə/, and of the high BF peak in /i/). More strik-
ing, however, are the response distributions along the best scale axis, which roughly 
indicates the inverse of the vowels’ spectral bandwidths (Fig. 2A-III). Here, consist-
ent with the bandwidths of the spectral peaks discussed earlier, Central/Open vowels 
tend to evoke maximal responses in broadly tuned cells commensurate with their broad 
spectra (low scales < 1 Cyc/Oct) while Closed vowels evoke maximal responses in 
narrowly tuned cells (scales > 1 Cyc/Oct), as indicated by the blue and red boxes in 
Fig. 2A-III, respectively. Response distributions in the best rate panels (Fig. 2A-IV) 
reveal a trend in the dynamics of the vowels as one moves along the Front/Back axis. 
Specifically, Front vowels (/ə/, /i/, /ɪ/, /ɨ/) evoke relatively stronger responses in  
the slower cells (with best rates <~ 12 Hz), as compared to the more Back vowels (/ʉ/, 
/o/, /ɔ/) as highlighted by the green boxes in Fig. 2A-IV. The remaining more Central 
vowels (/ɑ/, /ʌ/, /æ/, /ɛ/, /e/) exhibit all dynamics. This response pattern may reflect 
the longer durations required to complete the articulatory excursions toward or away 
from Closed vowels towards the front of the vocal tract. 

Figure 2B provides a compact summary of the population response to vowels. Each 
vowel is placed at the locus of maximum response in the neural population along the 
BF, best scale, and best rate axes. To highlight more clearly which of the three fea-
tures best segregates them, the 3-D display is projected onto each of the three marginal 
planes (Figs. 2B-II and 2B-IV)). It is readily evident in these displays that the Open 
and Closed vowels separate along the scale axis above and below 1 Cyc/Oct (horizon-
tal dashed lines in Figs. 2B-II and 2B-IV)). They are also distinguished by BF, with 
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the Open vowels clustering in the range 1.0 – 4.5 KHz (vertical dashed lines in Fig. 
2B-III). Finally, the best rate axis segregates the Front/Back vowels (as discussed ear-
lier), with Central and Back vowels locates at high rates (> 12 Hz), and Front vow-
els below it. 

Encoding of Consonants
Population responses to 15 consonants are shown in Fig. 3 in the same format already 
described for vowels. Three properties are commonly used to organize and classify 
consonants: place of articulation, manner of articulation, and voicing (Ladefoged, 
2006). Here we examined how these three properties are encoded in the responses 
of the neuron population. The distributions of the responses to the consonants sorted 
along the BF axis (Fig. 3A-II) approximates the features of their averaged spectra (Fig. 
3A-I), which in turn are known to be closely related to place of articulation cues. For 
instance, the difference between the more forward places of constriction for /s/ com-
pared to /ʃ/ is mirrored by the downward shift of the highpass spectral edge. Similarly 
the high-frequency noise burst at the onset of the forwardly-constricted /t/ contrasts 
with the lower-frequency distribution of the other plosives (/p/, and /k/).  However, 
there are also some notable differences in detail between the two sets of plots. There is 
generally a slight delay of about 20 milliseconds in the neural responses relative to the 
spectrograms (presumably due to the latency of cortical responses). In addition, how-
ever, there are substantial differences between the responses and spectrograms in cer-
tain phonemes. For example, high BF responses to /f/ in Fig. 3A-II are strong despite 
their relative weakness in the spectrograms. Similarly, the low BF responses to /v/ are 
not consistent with the spectrogram. In other consonants, there are differences in the 
"timing" of certain frequency regions such as the rapid onset of high frequencies in 
the spectrogram of /t/ relative to its more delayed response, or in the continuity of the 
spectral regions in /ʃ/, /d/ and /ŋ/. The origin of all these differences is unclear and 
may reflect the nonlinearity of neural responses or our limited sampling of the neural 
population (90 neurons).

Response distributions along the best scale and best rate axes (Figs. 3A-III and IV) 
capture well the essential manner of articulation cues that supply the information nec-
essary to discriminate plosives, fricatives, and nasals in continuous speech.  For exam-
ple, the broad distinction between “plosives” and “continuants” (e.g. /p/, /t/, /k/, /b/, 
/d/, /g/ versus /s/, /ʃ/, /z/, /n/, /m/, /ŋ/) is evident in the distribution of responses along 
the scale and rate axes (Fig. 3A-III and IV). Thus, plosives with their sudden and spec-
trally broad onsets display relatively strong activation in broadly tuned (low scales < 
1.1 cyc/oct) and fast (rates > 12 Hz) cells (regions outlined in red in Figs. 3A-III and 
IV) compared to the more suppressed responses to longer duration unvoiced fricatives 
and nasals (outlined in blue in Fig. 3A-IV). Note also the brief suppressed response 
preceding the onset of all plosives due to the (silent) voice-onset-time (VOT) in all 
panels within the red box (Figs. 3A-III and IV). 



193

Phoneme representation in primary auditory cortex

Fig. 3: Population response to consonants. (A) I.  Average spectrogram of 15 consonants 
phonemes grouped as 6 plosives, 6 fricatives and 3 nasals. Each of the plosive and frica-
tive groups contains 3 voiced and 3 unvoiced phonemes (see arrows at top). (II, III, IV) 
Average PSTH responses of the neural population to each consonant, plotted as in Fig. 
2A. The average PSTH responses are sorted by neurons’ best frequency (II), best scale 
(II) and best rate (IV) to emphasize the role of that parameter in the encoding of conso-
nants. (All other details of the analysis and generation of these plots are given in Section 
II). (B) Each consonant is placed at the centroid frequency, rate and scale of its neuro-
nal population response, measured from the corresponding PSTH responses (Fig. 3A). 
Plosive phonemes are plotted in red, fricatives in blue and nasals in green. The locus 
of each consonant is also shown collapsed in 2-D plots of (II) rate-scale, (III) rate-fre-
quency and (IV) scale-frequency. 
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Finally, the third cue of voicing is associated with the harmonic structure of voiced 
spectra near the low to mid-frequency range (0.2 to 1 KHz), and to a lesser extent 
the weak energy at low BFs near the fundamental of the voicing. Only this latter cue 
seems to distinguish consistently the voiced (/b/, /d/, /g/, /v/, /ð/, /z/, /m/, /n/, /ŋ/) from 
unvoiced (/p/, /t/, /k/, /f/, /s/, /ʃ/) consonants in our data as indicated by the green out-
lined region of Fig. 3A-II. However, such a strong low BF response as an indicator of 
“voicing” is missing in many of the vowel responses discussed earlier (e.g., the Open/
Back vowels in Fig. 3A-II). Instead, its presence seems to correlate with the low F1 of 
the Closed vowels there. Therefore, our data suggest that the low frequency voicing is 
reliably represented only in consonant responses, and perhaps in vowels where the F1 
is low enough to amplify it; however, there may well be a different and separate repre-
sentation of voicing in the auditory cortex, for example in terms of the pitch it evokes, 
or the harmonicity of its spectral components (Bendor and Wang, 2005).

Fig. 3B illustrates the locus of the population response to each consonant in a plot of 
best frequency, best rate and best scale similar to that used with vowels earlier. The 
lower panels of Fig. 3B are projections of the 3-D plot onto its three marginal planes. 
Members of the three groups of consonants - plosives (red), fricatives (blue), and 
nasals (green) - are located roughly close together in this parameter space. For instance 
plosives tend to drive broadly tuned (scale < 0.9 Cyc/Oct) and fast (rates > 12 Hz) cells 
(Figs. 3B-II). Rate is also a distinguishing feature between plosives on the one hand, 
and nasals and (most) fricatives on the other (above and below 12 Hz, respectively). 
Similarly, phoneme groups roughly segregate along the BF axis, with unvoiced frica-
tives occupying the highest frequencies (> 4KHz), unvoiced plosives falling between 
2-4 KHz, and other voiced phonemes falling below 2 KHz (Figs. 3B-III and IV). As 
with vowels, this plot of the neural loci of consonants reveals the relative distances 
among them and perhaps explains the pattern of perceptual confusion observed among 
them, as we shall elaborate next.

Phoneme recognition based on the responses
Average phoneme responses give useful insights into the mean representation of each 
phoneme, but they fail to indicate how well the neural population can discriminate 
phonemes, given the natural acoustic variability among samples of the same pho-
neme during continuous speech. To delineate perceptual boundaries implied by the 
responses to the phonemes, we trained a linear Support Vector Machine (SVM , Vap-
nik, 1995) for each phoneme to separate it from all others, based on the responses of 
the neural population. To determine the identity of a novel phoneme, the population 
response was input to all the classifiers, each computing the likelihood of its desig-
nated phoneme. The classifier indicating the maximum likelihood was taken as the 
identity of the input phoneme. Studying the pattern of pair-wise confusions by the clas-
sifier can assess the extent to which the neural phoneme representations can account 
for the perception of individual phoneme exemplars. 
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Fig. 4: Neural and human phoneme confusions. (left) shows the confusion matrix meas-
ured from classifications of the neural data. Labels along each row indicate the pho-
neme presented, and columns report the probability of the phoneme output by the clas-
sifier. The classifier was trained on responses of 20 neurons to 330 seconds of speech 
(90 sentences). The phonemes are arranged based on voiced-unvoiced (Fig. 6A and B) 
and plosive, fricative, nasal consonant categories to facilitate comparison with a previ-
ous study of human perception (Miller, and Nicely 1955) (replicated in Fig. 6 (right)). 
The dashed boxes delineate the 3 major phoneme categories: plosives, fricatives, and 
nasals. In both neural and perceptual data, phonemes within each category-plosives (/p, 
t, k/), fricatives (/f, s, ʃ /), and nasals (/m, n/)-tend to be more confusable within the 
group than across categories. The correlation coefficient between the complete neural 
and perceptual matrices is 0.78 (p=0.0002, randomized t-test).

RECONSTRUCTIONS 
Top-down effects of behavior and attention on cortical responses can best be dis-
cerned from the activity of large populations of neurons. This can be done in the audi-
tory cortex by characterizing the stimulus-response relationships of the neural popu-
lation in terms of their equivalent “forward” and “inverse” models (explained below). 
During behavior, top-down signals change these models, allowing us in turn to esti-
mate the nature and extent of the effects on the neural representations. From the encod-
ing point of view, the methods that are used to measure the information content of the 
neural response often fail to specify what aspects of the stimuli are encoded (Theu-
nissen, 1993). One possible way to investigate this question is reverse reconstruction 
of the stimuli where the best approximation of the input stimuli is estimated from the 
population response. These reconstructed stimuli can be compared to the original to 
understand what features are preserved. Here we explain two methods for the recon-
struction of the stimuli, the forward and inverse models and investigate the encoding 
of phonemes using this method.
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Forward model
Forward model (STRF) (Figure 5, left) is the transformation that explains the map-
ping of the sound spectrogram to the neural response. Intuitively it explains what a 
neuron is tuned to and can be used to predict the response of a neuron to a novel stim-
ulus. The forward model of a neuron, h(t,f) transform the sound spectrogram s(t,f) to 
the neural response r(t):

             (Eq. 1)

The function h is estimated by minimizing the mean squared error between actual and 
predicted response:

   min        (Eq. 2)

It is not possible to invert this equation to find s(t,f) from r(t) because of the ambi-
guity of the frequency dimension (response is a function of time and not frequency). 
However, we can recover the frequency dimension provided we have enough neurons 
to construct an invertible system of linear equations (full coverage of the frequency 
space). 

Assuming we have the response of n neurons to the same sound, we construct the fol-
lowing system of linear equations:

 

        (Eq. 3)

Assuming the H matrix has a pseudo inverse, we invert equation 3 to find S:

        (Eq. 4)

Inverse model
The inverse model of a neuron (Figure 5, right) is the transformation that maps the 
neural response back to the sound spectrogram. The inverse model is not as intuitive 
as STRF because it is the property of a neuron in a population. We can estimate the 
inverse model, G(t,f) that is defined as follows:

        (Eq. 5)

The function G is then estimated by minimizing the mean squared error between actual 
and reconstructed stimulus which results in normalized reverse correlation:

        (Eq. 6)

Since the statistics of stimulus have been removed in the calculation of H, the forward 
method does not assume any prior knowledge about the stimulus, however the inverse 
method takes into account the prior statistics of the stimuli. Furthermore, because 
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data from many recordings are combined to reconstruct the same stimulus spectro-
gram, it is reasonable to expect that increasing the number of recorded responses (neu-
rons) results in a faster and cleaner reconstruction of the spectrogram. In summary, by 
recording simultaneously from many neurons in AI and other auditory cortical fields 
where STRFs can be reliably measured, one can reconstruct an online approximation 
of the stimulus S.

Fig. 5: illustration of forward (left) and inverse (right) models of stimuli-response map-
pings. The forward model of a neuron (H) maps the spectrogram of the sound to the neu-
ral response. Having the model, one can predict the response of the neuron to any novel 
stimuli (left column). The inverse model (G) is a mapping from the neural response back 
to the sound spectrogram. Using the G functions, we can reconstruct the stimuli spec-
trogram from the neural population response (right).

Average phoneme spectrograms from the original and reconstructed stimulus
Phonemes vary across various spectral and temporal dimensions because of the way 
they are produced. Some of the parameters affecting the phonemes include the shape of 
the vocal tract, vibration of vocal cords and manner and place of articulation. To exam-
ine the encoding of these features in A1 we estimated the average phoneme spectro-
grams from the original and reconstructed signals. The average phonemes are shown 
in Fig 6 for consonants (top) and vowels (bottom). We divided the group of conso-
nants based on their manner of articulation into fricatives, plosives and nasals. Conso-
nants within these categories are different in their place of articulation. For each pho-
neme, two average spectrograms are shown obtained from original and reconstructed 
spectrograms. We quantified the similarity between original and reconstructed spec-
trograms using correlation coefficients as shown in Fig 6e. The correlation coefficients 
for almost all vowels are high indicating the effective encoding of the formant frequen-
cies by the neurons. Plosives (/p, t, k, b, d, g/) show slightly less correlation (from 0.8 
to 0.9), but higher than the fricative group (/s, ʃ, f, z, v/) (0.7 to 0.9).  Overall, the high 
correlation between original and reconstructed phonemes shows a strong encoding of 
the phonemic features in the primary auditory cortex. 
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Fig. 6: Average phoneme spectrograms from the original and reconstructed signals. The 
average phonemes are grouped into a) plosives, b) fricatives, c) nasals and d) vowels. 
For all phoneme groups, the important phonemic features are preserved in the recon-
structed signal indicating their proper encoding. The similarity is quantified using cor-
relation coefficients as shown in (e).

SUMMARY AND CONCLUSION
Responses to speech in primary auditory cortex reveal a multidimensional representa-
tion that is sufficiently rich to support the perceptual discrimination of many American 
English phonemes. This representation is made possible by the wide range of spectro-
temporal tuning in A1 to stimulus frequency, scale and rate. The great advantage of 
such diversity is that there is always a unique sub-population of neurons that responds 
well to the distinctive acoustic features of a given phoneme and hence encodes that 
phoneme in a high-dimensional space. Three dimensions of neural tuning considered 
in this study are the best frequency, rate (temporal modulations) and scale (spectral 
shape). We showed that frequency tuning of neurons provides a representation of the 
place of articulation and that rate and scale tuning provide a representation of manner 
of articulation, distinguishing plosives, fricatives and nasals. The explicit representa-
tion of phoneme identity across a population of filters tuned to BF, scale and rate sug-
gests a strategy for improved speech recognition systems in noise and other sources 
of variability.

ACKNOWLEDGEMENT
Partial funding for this project was obtained from the Air Force Office of Scientific 
Research, and the National Institutes of Health (NIH) Grants R01DC005779.



199

Phoneme representation in primary auditory cortex

REFERENCES
Walker, K., King, A., Ahmed, B., and Schnupp, J. W. H. (2006). “Psychometric and 

neurometric discrimination of non-conspecific vocalizations,” Abstract 430, Mid-
Winter Meeting of Association for Research in Otolaryngology, Baltimore.

Miller, G., and Nicely, P. (1955). An analysis of perceptual confusions among some 
English consonants,” J. Acoust. Soc. Am., vol. 27, 338-352.

Theunissen, F.E., David, S.V., Singh, N.C., Hsu A., Vinje, W.E., and Gallant, J.L. 
(2001). “Estimating spatio-temporal receptive fields of auditory and visual neurons 
from their responses to natural stimuli,” 1: Network. 12(3): 289-316.

Klein, D.J., Simon, J. Z., Depireux, D. A., and Shamma, S. A. (2006). “Stimulus-invar-
iant processing and spectrotemporal reverse correlation in primary auditory cor-
tex,” J Comput Neurosci., 20(2): 111-36.

Seneft. S., and Zue, V. (1988). “Transcription and alignment of the timit database”, J. 
S. Garofolo,” Ed. National Institute of Standards and Technology (NIST), Gaith-
ersburgh, MD.

Simon, J. Z., Depireux, D. A., Klein, D. J., Fritz, J. B., and Shamma, S.A. (2007), 
“Temporal Symmetry in Primary Auditory Cortex: Implications for Cortical Con-
nectivity, Neural Computation,” 19, 583-638.

Ladefoged, P., A. (2006). “Course in phonetics. Orlando: Harcourt Brace,” 5th ed. 
Boston: Thomson/Wadsworth.

Chistovich, L. A., and Lublinskaya, V. V. (1979). “The `center of gravity effect in 
vowel spectra and critical distance between the formants: Psychoacoustical study 
of the perception of vowel-like stimuli,” Hear. Res., 1 185-195.

Bendor, D., and Wang, X. (2005). “The neuronal representation of pitch in primate 
auditory cortex,” Nature 436, 1161–1165. 

Vapnik, V. N. (1995). The Nature of Statistical Learning Theory, Springer.
Theunissen, F. E. (1993). “An Investigation of Sensory Coding Principles Using 

Advanced Statistical Techniques,” Thesis, Univ. California, Berkeley.



200


