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The evolution of automatic speech recognition (ASR) points out that employ-
ing principles having counterparts in the human auditory system may lead to 
better performance. Mel- or bark-warping of the frequencies, masking, com-
pression and adaptation are some of these techniques. Hearing has already been 
modeled up to the cochlear nucleus (CN) to some degree. However, only few 
people question, whether one of the very first steps, namely the modeling of the 
basilar membrane delay trajectories, has been modeled and utilized sufficiently 
fair. To find the answer, we use an extraordinarily precise auditory model, and 
try to extract the excitation-dependent shapes of the delay trajectories. We use 
these features without any other spectral information to carry out speech recog-
nition tasks under different noise conditions on the TIMIT database. We found 
that the shapes of the cochlear delay trajectories carry precious information, 
which can be extracted even in the presence of noise. This finding may play an 
important role in next generation cochlear implants. 

INTRODUCTION 
Even though automatic speech recognition (ASR) has been a much-discussed research 
topic during the last decades, there is still no technical solution which would be supe-
rior to human performance. Conventional speech recognition engines employ popular 
feature extraction methods like perceptual linear prediction (PLP) or mel-frequency 
cepstral coefficients (MFCC). Already a number of remarkable extensions, e.g. rela-
tive spectral transform for PLP (RASTA-PLP), see Hermansky and Morgan (1994), 
or auditory processing motivated adaptation for MFCC as in Holmberg et al. (2006), 
had been proposed, with which a tiny performance growth could always be achieved. 
Notwithstanding, there has been a very little improvement in the past few years and 
ASR seems to have reached a performance status-quo. Therefore, it seems reasonable 
to consider if there is a completely different way of sound representation, which could 
enable novel recognition techniques.

We chose to investigate the very first steps of any neurobiologically motivated sound 
processing, namely the frequency decomposition, and concluded to use a very precise 
auditory model for this task. The system we employ has an active basilar membrane 
(BM) model that faithfully represents outer hair cell (OHC) amplification, masking, 
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and, the most relevant in our case, the cochlear delay trajectories (CDTs), which orig-
inate from the traveling waves on the BM. It is important to recall that the shape of 
each trajectory has a correlation to the momentary timbre of the sound, see Greenberg 
et al. (1998). Pitch, on the other hand, can be associated with the length, i.e. the place 
of decay, of each trajectory. In this paper we only use the timbral information, and we 
discard pitch and any direct spectral feature.

Motivation behind this idea was that the shapes of cochlear traveling wave delay tra-
jectories are natural features. They form patterns, and if they do so, the auditory system 
surely makes use of it. On the other hand, the authors are not aware of any public rec-
ognition system, or, more important, any cochlear implant (CI) system, which makes 
use of these features. The fact, that vowels can be classified based on CDTs have been 
demonstrated by Harczos et al. (2006), yet, it has not been investigated if a larger set 
of phones, including consonants, could be classified that way. Therefore, an experi-
mental speech recognition framework had been built to find an answer.

More details on the used auditory model are introduced in the following section. For 
the feature extraction an artificial Hubel-Wiesel network (HW-ANN) is employed as 
in Brückmann et al. (2004). First, the architecture and way of processing, then details 
on the automated speech recognition, and last, but not least, results, arising questions, 
and conclusions will be discussed. 

AUDITORY MODEL 
To model all the consecutive processing steps of the human ear, results of neurophysi-
ological studies have to be incorporated. Basilar membrane is generally modeled by a 
gammatone filterbank, which seems to be a good compromise between accuracy and 
required computational power. Since we need very high time resolution for a detailed 
representation of CDTs, we use the system proposed by Baumgarte (2000) which is 
an extended inner ear model based on Zwicker’s former work. Here, BM is divided 
into consecutive sections, which represent equal-width bands in the Bark scale. The 
movement of the interconnected sections, including the local amplification effect of 
the OHCs, is calculated via differential equations in the oversampled time domain.

Some masking is already contained in the BM-model by its nature. However, accord-
ing to Holmberg et al. (2006), the presence of adaptation should further increase rec-
ognition capabilities. To introduce adaptation, we utilize two subsequent neural stages: 
inner hair cells (IHCs), and auditory nerve (AN) synapses. An inner hair cell model 
that represents the actual state of the art is developed by Sumner et al. (2002), and 
post-synaptic potential of the AN fibers (ANFs) can be modeled by the well-known 
equations by Hodgkin and Huxley (1952). To allow the synaptic adaptation effect to 
show up, IHC- and ANF-level calculation was repeated m=10 times and the results 
were averaged. The selection of the value m coincides with the fact that, in average, 
each human IHC has around 10 connecting afferent nerve fibers. The repetition of cal-
culations makes sense also from the statistical point of view, since the variance var(n) 
is proportional to 1/m with n being the average number of spikes during a short time 
interval ∆t.
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FEATURE EXTRACTION
The kind of information to look for and the way to extract it are common questions by 
designing any recognition or classification system. To make use of CDTs, some simple 
curve equations and an efficient curve extraction network will be introduced through 
the next paragraphs.

Cochlear delay trajectories
Greenberg et al. (1998) pointed out that the motion of the BM proceeds in an orderly 
fashion from the base to the point of maximum displacement, beyond which it damps 
out relatively quickly. The transit of the traveling wave is extremely fast at the base, 
but slowing dramatically for peak displacements at the apex of the cochlea. It has been 
showed, furthermore, that the delay trajectories can be efficiently modeled by the sim-
ple equation:

        (Eq. 1)

Using (Eq 1), cochlear delay can be approximated by the given frequency fi and delay 
constant k. The simple statement behind the equation above is that delay trajectories, 
in general, have characteristics similar to that of a reciprocal function. Since our data 
is digital, it is preferred that an array of matrices represent the possible trajectories. 
The following equation covers a range of N different curves, with an average inflex-
ion of c.

        (Eq. 2)

where y=1,2,..,n for each i=1,2,..,n. Ti is therefore an n-element set of sparse matri-
ces of size n-by-n. Each matrix of Ti has zero elements except for the positions given 
by (Eq 2). Two examples representing sets of possible curves with given parameters 
are shown in Fig 1.

Fig. 1: Possible curves using different c values. Black pixels represent ones in the cor-
responding quadratic matrix Ti.



86

Tamás Harczos, Gero Szepannek, and Frank Klefenz

Hough-transform via HW-ANN
Emerging auditory nerve activity patterns consist of similar curves to that shown in 
Fig 1. Now, a robust tool is needed to extract and classify the curvature information. 
An obvious choice for shape extraction would be the Hough-transform, however, it 
is known to be computationally intensive, see Van Swaaij et al. (1990). Hubel et al. 
(1978) demonstrated the natural orientation columns in the macaque monkey brain, 
which are believed to perform a kind of parallel Hough-transform, serving the orien-
tation of the monkey by extracting features from the seen image in real-time. One can 
easily come to the idea of trying to model this naturally brilliant architecture, hop-
ing that the same speed-up can be achieved. Epstein et al. (2002) designed a parallel 
Hough-transform engine, where, in reducing the n-dimensional feature space to two 
dimensions, the coordinate transform can be executed by a systolic array consisting 
of time-delay processing elements and adders. Brückmann et al. (2004) showed that 
not only video signals as bars of different slopes, but also audio signals as sinusoids 
are self-learned by feed-forward timing neural networks. It has also been shown that 
the training of HW-ANNs can be done in a straight and very fast way if several rules 
regarding the shapes to be trained are satisfied; see Harczos et al. (2006) for details. 
The previously presented curve equation (Eq 2) satisfies all these rules, and, can there-
fore be used for quick training of a HW-ANN.

Hough-transformed CDTs
Processing in the auditory model covers the whole audible frequency range. On the 
other hand, training and test data have an original sampling rate of 16000 Hz. For this 
reason we first apply cropping on the auditory images, and only the remaining part 
(around 150 channels) will be Hough-transformed. During the calculations for this 
paper we used N=144 and c=40 parameter values to build up the Ti matrices for the 
parallel Hough-transform.

Fig. 2: A highly coherent 75 ms long auditory nerve activity (ANA) pattern induced by 
phone /eh/ (top), and its Hough-transformed image using parameter values of N=144 
and c=40.

Since we are not looking for a rate of activity, but for well-defined shapes in a picture, 
we expect the Hough-transformed CDT (HCDT) representation to be largely noise-
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robust (see findings in Section 5). We can refer to any point of a HCDT image by intro-
ducing H(t,y), where t denotes time (x axis) and y stands for the channel (y axis). For 
example, a local maximum at H(τ,n) would let us conclude that there was a curve with 
curvature n (defined by Tn with given N and c) at time τ on the input image.

Feature extraction from HCDTs 
The HCDT representation (shown in Fig. 2, bottom) contains a great deal of interesting 
information, but it is largely over-detailed. The fine temporal information generated 
by the auditory model contains short-time features on time scales smaller than a mil-
lisecond. Since short-time features can be speaker- and situation-dependent, further-
more, because a temporally over-detailed sequence is unsuitable for a hidden Markov 
model (HMM) based ASR, we apply windowing onto the HCDT. We chose to use 
l=0.01 second (10 ms) window length to stay comparable to other systems. The chan-
nels of the HCDT image will also be grouped into b=12 bands, i.e., the used windows 
become 2D windows. The window height is non-equal, and non-linearly distributed, 
because with c=40 the most CDTs project to the medial channels of the HCDT. The 
number of elements in each re-grouped band, in other words, the height of the win-
dows, is given by (Eq. 3).

         (Eq. 3)

During the processing of an L-second long input sound, the whole HCDT image will 
be split into b times (L\l+1) windows of data (where ‘\’ stands for integer division). The 
set of windows is denoted by Wp,q, where p=1,2,..,b, and q=1,..,L\l+1. Feature vec-
tors, later also referred to as HCDTf, will be built up by calculating the variance, and 
the difference between the two extremes of each window (also referred to as range). 
Additionally, two quasi-energy terms, and the first order difference of the variance and 
that of one energy term are added. For a formal description of the structure of feature 
vectors see (Eq. 4).

     
 

  

  (Eq. 4)

 
DESIGN OF ASR EXPERIMENTS
We evaluated our recognition concept by developing two independent but identical 
continuous speech recognition systems, both based on the HTK Toolkit by Woodland 
and Young (1993). The only difference between the two systems is that they use dif-
ferently generated front-end feature set. Three-state hidden Markov models are used 
for classification, where each HMM state initially consists of a Gaussian mixture with 
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diagonal covariance. Using the calculated features and the given original phonetic 
transcriptions, both systems carry out 23 rounds of re-estimation of the HMM param-
eters using an embedded training version of the Baum-Welch algorithm of HTK.

Used features
Both recognition systems process input sounds on a 10 ms window skip basis. The 
first system performs a conventional pre-emphasis on any 25 ms piece of windowed 
input sound, and then calculates a 20 channel cepstrum from which the mel-frequency 
cepstrum coefficients (MFCC) of the first 12 channels, along with an energy term, 
will form the base features. Additionally, the first and second order derivatives are 
appended to the feature vector. The second system only employs the HCDT-based fea-
tures with the same number of feature vector elements as that of the first system.

Training and test data set
Recognition experiments were conducted on the TIMIT database, see Zue et al. 
(1990), using the whole corpus of 6300 sentences. Sound files were normalized in 
amplitude to -6 dB, but were left unfiltered in any other meaning. It is very important 
to emphasize that we do not use any kind of grammar, bi-gram or triphone models. 
Recognition of phones is therefore completely based on the actual feature vectors. A 
recognized word is stated to be correct, if both its consisting phones and their sequence 
are recognized correctly. The recognition experiments on both systems were carried 
out three times using three different set of phones:

• the full set of TIMIT phones as in Zue et al. (1990),

• a reduced set of 38 phones introducing phone-level equalities (this set includes 
aa, ae, ah, aw, ay, b, ch, d, dh, dx, eh, er, ey, f, g, hh, ih, iy, jh, k, l, m, n, ng, ow, 
oy, p, r, s, sh, t, th, uh, uw, v, w, y, z),

• and a minimal set of the 27 most common phones applying even more equali-
ties (this set includes aa, ah, b, ch, d, eh, er, f, g, hh, ih, iy, k, l, m, n, ow, p, r, s, 
sh, t, uw, v, w, y, z).

Since the recognition variability decreases by employing the reduced or minimal 
phone set, the overall recognition rate is expected to increase. The process of calculat-
ing with different phone sets is intended to help highlight problematic phones, or, on 
the contrary, to point out possible weaknesses of the system.

Noise conditions
All recognition tasks were run five times, simulating different noise conditions. First, 
the original (clean) TIMIT sounds without added noise were used, and then signal to 
noise ratios (SNRs) of 15 dB, 10 dB, 7.5 dB, and 5 dB were introduced using white 
noise. In each situation, the whole training and test corpus was affected, and the HMMs 
of both recognition systems were re-trained.
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ASR RESULTS AND DISCUSSION
We evaluated average correct phone and word recognition rates using three different 
phone sets. We have kept track of both under different noise conditions. A perform-
ance comparison is presented through Table 1. We introduced relative scores to con-
front the tendencies of both methods. Results show on one hand that MFCC outper-
forms HCDTf under clean condition, but, on the other hand, performance of MFCC 
also decreases much more rapidly in the case of increasing noise. In other words, by 
using HCDT instead of MFCC features, relative degradation decreases with noise.

Table 1: Average correct phone recognition rates (%) with MFCC and HCDTf features 
on the three phone sets. Relative score indicates HCDTf performance compared to that 
of MFCC.

Noise robustness is also preserved if phone frequencies (numbers of occurrences) 
are reckoned in the recognition performance, but, by studying the resulting confu-
sion matrices generated by HTK’s statistics tool we concluded that the two systems 
(MFCC-based vs. HCDTf-based) recognize different set of phones most properly.

MFCC identifies the phones /aa/, /ao/, and /ey/ most accurately, which are more fre-
quent than the best-recognized phones of the HCDT-based system, /ay/, /ow/, and /
ux/. We also found that in the presence of noise, phone /f/ was always least accurately 
recognized by the MFCC features, while the same phone was always among the three 
most accurately identified ones (so was phone /t/, too) in the HCDT-based system. This 
confirms the possibility of advantageously combining the two feature sets.

CONCLUSION
A large number of different spectral analysis methods for automated speech recogni-
tion have already been published; see e.g. Papandreou-Suppappola (2003) for an over-
view. There have been great efforts to improve some of these by employing principles 
revealed from the human auditory system as in Moore (1995). At the same time, some 
of these spectral analysis techniques have been modified, or even simplified, to be uti-
lizable in CI systems, see Zeng et al. (2004). It, therefore, seems natural to ask, if bio-
logically reasonable natural features exist, which might be used for both purposes.

By employing a very precise inner ear model we experimented with cochlear delay 
trajectories originating from the traveling waves on the BM. We found that the vary-
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ing shapes of these delay curves, without any additional spectral information, can be 
used as feature for speech recognition. Average recognition rates do not reach that of 
the MFCC features (except for very low SNRs), but the system behaves very stable 
under different noise conditions. We found furthermore that the two feature sets could 
possibly be combined for a better overall performance.

The presented novel method along with the results confirms that cochlear delay tra-
jectories contain important clues, which can be used for speech recognition purposes. 
We believe that trajectory shapes would be important features in CI systems to ena-
ble increased understanding of speech, and should not be neglected in future CI strat-
egies.

OUTLOOK
The aim of the study was to investigate two aspects of the new HCDT features: noise 
robustness and information content as compared to standard MFCC features. During 
our studies we found that the MFCC- vs. HCDTf-based systems recognize different 
set of phones most properly, which indicates the possibility to combine these features 
to achieve a better overall performance. 

We already initiated a pilot study to investigate this potential. Until now, we com-
bined MFCCs with HCDTfs only for clean speech and performed LDA for extrac-
tion of uncorrelated features as in Haeb-Umbach et al. (1993). Results were com-
pared to those using only MFCCs. The experiment showed that for several feature 
vector dimensionalities the recognition rates of the standard MFCC front ends can 
be increased using both features. We conclude again, that the HCDT features contain 
additional information that is not included in the MFCCs alone.
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