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Models of speech intelligibility (e.g., Speech Intelligibility Index and Speech 
Transmission Index) have proven useful in a number of applied (e.g., algo-
rithm development) and theoretical applications (e.g., theories of speech per-
ception). However, in many real-world situations, these models fail to predict 
accurately speech intelligibility due to the complex nature of the soundscape 
(e.g., competing talkers), particular attributes of the listener/talker combination 
(e.g., speaking rate, age, and hearing loss), and presentation modality (audi-
tory or auditory-visual). This paper discusses several of these challenges and 
recent efforts to address them. Particular attention is paid towards our efforts 
to model auditory-visual speech intelligibility. Current models of speech intel-
ligibility base their predictions on characteristics of the acoustic speech signal, 
background noise, and reverberation. However, because visual speech cues are 
not included in these models, they provide a poor prediction of speech intelli-
gibility in many everyday environments. To address this particular challenge, 
we describe a method for integrating visual and acoustic speech cues into a 
unified model of speech intelligibility. Kinematic motion from a talkers’ face 
during speech production is combined with the acoustic speech signal proc-
essed by a computational multi-channel model of peripheral auditory analy-
sis. The outputs of the peripheral model are integrated with the visual signal 
in a weighted fashion based on the degree of to which the visual kinematics 
are predictive of the acoustic envelopes derived from each frequency channel, 
yielding an enhanced acoustic signal, especially in the mid-to-high frequencies. 
Enhanced and unmodified noisy speech signals are then processed through a 
cortical model which extracts critical speech modulations to compute a spec-
tro-temporal modulation index (STMI), yielding  predictions for auditory and 
auditory-visual speech presented in steady-state noise.

INTRODUCTION
Models of speech intelligibility, such as the Articulation Index (AI; ANSI, 1969), 
Speech Intelligibility Index (SII; ANSI, 1997), and the Speech Transmission Index 
(STI; Steeneken and Houtgast, 1980) serve at least two broad purposes. First, they 
highlight various properties of speech and background signals thought to be impor-
tant for speech intelligibility. For example, when calculating the STI, intelligibility is 
thought to be determined largely by the ability to preserve the slow rate time-inten-
sity information (i.e., amplitude envelope) extracted from separate channels along the 
tonotopic frequency axis. In the SII, intelligibility is thought to be determined by the 
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speech-to-noise ratio in different spectral bands, weighted in importance according to 
the type of materials used for testing (e.g., nonsense syllables, words, or sentences). 
Each of these models represents a view of speech recognition that has proven useful in 
predicting average speech intelligibility under a variety of listening situations.

In addition to validating choices concerning the important determinants of speech intel-
ligibility, models of intelligibility provide a practical tool that can be used to assess new 
devices and algorithms for transmitting speech information without the time and cost 
associated with behavioral testing. Based primarily on physical measures of the speech 
signal and background environment, these models predict the transmission efficiency 
and accuracy of different signal processing schemes prior to testing any listeners.

Over the years, speech intelligibility models have undergone refinements intended to 
improve accuracy and robustness across different background environments and pop-
ulations of listeners. Nevertheless, several fundamental challenges remain in gener-
ating a robust model of speech intelligibility applicable to the range of listening sit-
uations encountered in everyday life. These challenges include (a) the availability of 
non-acoustic cues for speech understanding, (b) complex effects associated with fluc-
tuating noise and informational masking, (c) individual differences in speech under-
standing across listeners, and (d) the availability of visual speech information. First, 
a brief overview of each of these challenges is presented, along with a discussion of 
attempts made to address each problem. Then, a potential solution for the fourth chal-
lenge is described in more detail, whereby auditory and visual signals are integrated 
in a stimulus-based model of speech intelligibility. 

CHALLENGES TO SPEECH INTELLIGIBILITY MODELS            
Non-acoustic speech information
Importance functions used to weight the model outputs along the frequency axis 
appear to shift with speech material (syllable, word, and sentence, ANSI, 1997) and 
with input modality (auditory or auditory-visual, Grant, 2006; Grant and Bernstein, 
2007). The confounding of “hearing speech” (access to acoustic cues) with “under-
standing speech” (use of language processes including lexical knowledge, context, 
and memory) continues to be debated. The question of whether non-acoustic cues and 
cognitive linguistic processes should be included in the computation of intelligibility 
indexes has not been resolved.

As an example, the ANSI (1969) standard for estimating the articulation index (AI) 
shows significant variation in the recognition scores for different speech materials at 
the same AI (see Figure 15, ANSI, 1969). This is because speech intelligibility mod-
els were originally developed to account for the effects of acoustic speech cues and 
not the many non-acoustic processes involved in speech perception. Researchers 
have attempted to extend these models to integrate contributions of non-speech cues 
(French and Steinberg, 1947). For example, Boothroyd and Nittrouer (1988) charac-
terized the relation between phoneme scores, word scores and sentence scores in terms 
of scalar exponents, j- and k-factors. However, this characterization is based on empir-
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ical curve fitting and therefore cannot be generalized beyond the psychoacoustically 
measured speech databases and particular listening conditions. Furthermore, ques-
tions remain as to how the use of context may interact with the available acoustic cues. 
Semantic and morpho-syntactic context may affect consonant and vowel recognition 
differently. The optimal use of context may depend on the acoustic environment (i.e., 
reverberation, environmental noise, etc.), or on the frequency content of the speech. 
The amount and type of context available to the listener may also affect the integra-
tion of bottom-up and top-down speech processes.

Fluctuating noise and informational maskers 
Speech intelligibility varies greatly depending on the temporal and linguistic charac-
teristics of the background maskers. Compared to steady-state maskers, temporally 
modulated maskers typically result in less speech interference for normally-hearing 
subjects owing to the listeners’ ability to extract information about the target signal 
during quiet portions of the masker (Festen and Plomp, 1990). However, when the 
masker includes competing speech from other speakers, the amount of interference 
can be very large due to the informational content of the masker (Brungart, 2001). 
Thus, for speech intelligibility models to predict performance accurately under these 
complex masking conditions, temporal and informational properties of the target and 
background signals must be considered. Recent work by Rhebergen et al. (2006) has 
addressed the issue of fluctuating maskers by implementing a series of short-time cal-
culations that enables the intelligibility index to reflect the benefit engendered by tem-
poral dip listening in normal-hearing listeners. However, this modification does not 
address the well-known result whereby hearing-impaired listeners generally do not 
benefit from fluctuating maskers (Festen and Plomp, 1990; George et al. 2006). It 
remains an open question whether this deficit reflects a simple temporal resolution 
problem, or a suprathreshold distortion that limits the cues available for segregating 
the target speech from a speech-like fluctuating masker (Bregman, 1990). For exam-
ple, given that hearing-impaired listeners are more likely to rely on temporal rather 
than spectral cues for understanding speech (due to reduced frequency resolution), 
a temporally modulated noise, which is easily segregated from speech by normally-
hearing listeners, may appear to be more “speech like” to someone with a hearing loss, 
thus causing significant interference between target and background streams. This sug-
gests similarities to modulation detection interference (MDI) whereby a modulated 
masker, remote in frequency from a modulated target, can nevertheless exert signifi-
cant disruption on the detection of target modulation (Yost and Sheft, 1994; Oxenham 
and Dau, 2001). Thus, when the target and masker become perceptually similar,  infor-
mational masking (defined as a reduction in performance that cannot be accounted 
for by peripheral energetic masking) becomes a factor which can negatively impact 
speech understanding (Brungart, 2001). Difficulty in understanding the target speech 
in presence of competing talker(s) is a very commonly encountered scenario in every-
day life. However, as informational masking involves linguistic processing and mem-
ory, it requires an elaboration of central auditory processing which is typically not part 
of current intelligibility models.
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Individual differences across listeners 
Speech recognition involves the extraction, integration, and interpretation of cues con-
tained in the speech signal and environment. As discussed earlier, if the speech materi-
als are meaningful words, phrases, or sentences, the listener’s vocabulary, knowledge 
of the particular situation, and general knowledge about the world also play an impor-
tant role in the recognition process. As a result of the many different stages involved 
in speech recognition, performance on a given speech task can vary widely across lis-
teners. This is especially true for elderly and hearing-impaired listeners tested in noisy 
environments even when audiometric thresholds are quite similar. Therefore, models of 
intelligibility that include only the audiogram as a characterization of the listeners hear-
ing cannot fully account for observed individual differences. Plomp (1978) suggested 
that suprathreshold differences in hearing capacity across listeners may relate better 
to speech recognition scores in noise. Recent efforts to model suprathreshold deficits 
have mostly been directed towards peripheral distortion such as reduced frequency and 
temporal selectivity (Glasberg and Moore, 1989), and not central processing. Individ-
ualized characterizations of the auditory periphery, when incorporated into a model of 
intelligibility, have the potential to track more accurately individual performance dif-
ferences. Efforts are underway to model the internal representations of speech in noise 
for these listeners (Zilany and Bruce, 2007; Summers et al., this volume). These efforts 
combine a peripheral model of the auditory system (e.g., Lopez-Poveda and Meddis, 
2001) with a cortical model (e.g., Chi et al., 1999; Elhilali et al., 2003). The output of 
the cortical model highlights spectral and temporal modulations in the target (noisy) 
speech signal and compares these to the outputs of a “clean” speech signal through a 
normal-hearing model. By fitting model parameters for the peripheral stages of process-
ing according to individual data obtained through psychophysical tests, predictions of 
speech recognition in noise can more accurately reflect individual suprathreshold dis-
tortion than current models using only hearing thresholds.

Effect of visual speech information
Under typical communication settings between two or more people, speech recogni-
tion is determined by both auditory and visual cues. Research has shown that audi-
tory-visual speech is more robust, easier to recognize in noise and reverberation, and 
faster to encode than auditory alone speech. Furthermore, how a listener performs with 
audio-alone speech is not necessarily predictive of how they will perform in AV con-
ditions (Grant and Walden, 1996). For example, if a listener has only high-frequency 
auditory information available, the visual benefit will not be as great as if they only 
have low-frequency information. This suggests a need for a model that can make pre-
dictions about a listener’s AV speech intelligibility. 

A number of models have been proposed to account for the benefits of visual cues 
to speech perception. However, these models require that recognition performance 
in auditory, visual, and auditory-visual conditions be measured separately (Braida, 
1991; Massaro, 1998). Thus, although predictions of audiovisual (AV) speech rec-
ognition and AV integration are possible with these models, one of the key practical 
advantages afforded by an intelligibility index such as the STI or SII is lost, namely 
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that predictions can only be made after extensive behavioral data on speech recogni-
tion have been gathered. What is required is some means for combining auditory and 
visual sources of information based on the physical characteristics of the signals them-
selves. A potential solution for integrating auditory and visual speech cues for speech 
intelligibility models is presented below. 

A SIGNAL-BASED MODEL OF AUDIO-VISUAL SPEECH INTELLIGIBILITY 
Background
Elhilali et al. (2003) proposed a model of speech intelligibility based on the degree 
to which the temporal and spectral modulations of speech are preserved after being 
degraded by the external environment and processed by the auditory system (Chi et 
al., 1999). Their model of auditory processing consists of a middle ear filter, a periph-
eral filterbank stage, a lateral inhibition stage providing spectral sharpening, speech 
envelope extraction, and a cortical stage that highlights slowly changing spectral and 
temporal modulations. A spectrotemporal modulation index (STMI) then provides an 
estimate of speech intelligibility by comparing the modulations contained in a clean-
speech template (derived by passing clean speech through the peripheral and corti-
cal models) to those contained in the target speech signal. The STMI has successfully 
accounted for degraded speech intelligibility due to background noise and reverber-
ation (Elihilali et al., 2003) and the speech recognition differences associated with 
directional and omnidirectional microphones (Grant et al, in press). 

Based on the work of Grant and Seitz (2000) and Grant (2001) showing that speech 
envelopes and visual lip movements are correlated, and that listeners exploit this cor-
relation to improve speech detection in noise, Girin et al. (2001) and Berthommier 
(2004) showed that the physical lip movements can be used to enhance acoustic speech 
signals that have been degraded by noise. We used a similar approach whereby the 
outputs of the peripheral stage are enhanced by the visual input signal before being 
passed to the cortical stage.

Stimuli
Visual inputs to the model were extracted using an Optotrak 3D system (Northern Dig-
ital Inc., Waterloo, Ontario, Canada). An array of small infrared-emitting units were 
attached to a talker’s face and head at 14 positions on the face (eight around the lips, 
two on the chin, and two on each cheek). Five additional units were attached to a crown 
fixed to the talker’s head, which served as a reference point to subtract out head move-
ments from the facial movement data. Three infrared cameras recorded the movements 
of the sensors during speech production, allowing the extraction of the three dimen-
sional locations of each sensor over time (sampling rate of 130 Hz). Recordings of 
sixty IEEE (1969) sentences spoken by a single male talker formed the primary data-
base used for this study. Although the Optotrak captured movements in three dimen-
sions, only two dimensions (vertical and horizontal) were used, yielding a total of 28 
channels of visual information (14 sensors x two dimensions). For the purposes of this 
work, the depth dimension (i.e. distance from the camera) was discarded.
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The corresponding audio speech signal was digitally stored simultaneously at a sam-
pling rate of 22050 Hz. The linear peripheral filterbank of the Elhilali et al. model was 
replaced by the level-dependent, dual-resonance nonlinear filterbank (Lopez-Pov-
eda and Meddis, 2001) parametrized for a normal-hearing listener. There were 136 
peripheral channels, with logarithmically-spaced best frequencies (BFs) ranging from 
125 to 6000 Hz. A lateral inhibition stage (Elhilali et al., 2003) reduced the number 
of channels by one to 135. Envelopes for the output of each channel were derived by 
half-wave rectifying and low-pass filtering (3-dB cutoff = 20 Hz, slope 6 dB/oct). The 
audio envelopes were then downsampled to the 130-Hz rate associated with the vis-
ual data. 

Combining auditory and visual information
Based on the work of Girin et al., visual and degraded auditory envelopes were com-
bined to make the best possible estimate of the clean auditory envelopes. The result-
ing “enhanced” auditory envelopes then became the input to the next stage of the 
model. Formally, the clean auditory envelope (Ach,clean) for each of 135 auditory chan-
nels ch was assumed to be a linear combination of the degraded auditory envelope for 
that channel (Ach,degr) and the visual motion (Vi) from each of the 28 visual channels 
i, plus noise (ε):

        (Eq. 1)

where ba,ch and b1,ch…b28,ch represent the weights applied to the degraded auditory 
envelope and the visual envelopes respectively, and b0,ch is a constant for channel 
ch. 

A training phase based on thirty IEEE sentences produced estimates ( chab ,
ˆ

chch b, b ,28,0
ˆ...ˆ ) 

of the 4050 coefficients in equation 1 (135 channels times 30 coefficients/channel) that 
would yield the best prediction of the clean auditory envelopes (Âch,clean), i.e. mini-
mizing the root-mean-square of the error term ε. Because we did not expect the vis-
ual signals to yield information about the absolute magnitude of the audio signal, the 
auditory envelopes were normalized by the maximum envelope value across the 135 
channels and 30 sentences. 

It was assumed that the weights ba would vary depending on the degree to which the  
auditory envelopes were degraded. For example, in the case of no background noise, 
Ach,degr would yield a perfect estimate of Ach,clean, and therefore ba,ch=1 and b0,ch … 
b28,ch would all equal zero. At the other extreme, at a poor SNR where the audio sig-
nal is inaudible, b0,ch … b28,c would be maximal and ba,ch=0. Therefore, a different set 
of coefficients were estimated for each of a range of signal-to-noise ratios (SNRs). The 
spoken sentences were mixed with stationary Gaussian speech-shaped noise (SSN, 
shaped to have the same long-term amplitude spectrum as the speech) at SNRs of +∞ 
(no noise), +18, +12, +6, +3, 0 -3, -6, -12 and -18 dB. The level of the speech wa fixed 
at 65 dB SPL, and the level of the noise varied to produce each desired SNR. The enve-
lopes derived from the combined speech and noise formed the degraded signals used 
to produce estimates of the coefficients in equation 1 at each SNR.

)()()()(
28

1

,,0deg,,, ttVbbtAbtA
i

ichichrchchacleanch ε+++= ∑
=



53

Modeling auditory and auditory-visual speech intelligibility: Challenges and possible solutions 

Figure 1A shows the correlation between the clean (Ach,clean) and degraded auditory 
envelopes (Ach,degr) as a function of the auditory periphery channel BF, for the various 
SNRs tested. The envelope information available in the degraded auditory signals is 
clearly affected by the presence of noise. Figure 1B shows the correlation between the 
Ach,clean and the Âch,clean calculated from the Ach,degr and the Vi’s according to equa-
tion 1. The correlations in Fig. 1B are larger than for the corresponding plots in Fig. 
1A, indicating that the visual channels have restored some of the auditory information 
that had been degraded by noise. There is little decrease in the magnitude of the cor-
relations below an SNR of -12 dB SPL, suggesting that the -12 and -18 dB plots rep-
resent the proportion of the variation in the Ach,clean accounted for by the visual sig-
nals alone. At these low SNRs, the correlation tends to increase in magnitude with 
increasing BF, indicating that the visual inputs are redundant and provide more infor-
mation about high than low frequencies. This is consistent with previous results indi-
cating that visual inputs tend to provide more perceptual benefit when only low-fre-
quency auditory information is available than when only high-frequency audio con-
tent is present (e.g. Grant and Walden, 1996; Bernstein and Grant, this volume). Fig-
ure 1B demonstrates that introducing the availability of low-frequency auditory infor-
mation by adjusting the SNR would have a greater effect on intelligibility than alter-
ing the high-frequency SNR.  

Fig. 1: (A) Correlations between degraded audio envelopes and clean audio envelopes 
as function of cochlear channel best frequency (BF). The parameter shows the SNR 
from -18 dB to +18 dB. (B) Correlations between visually enhanced audio envelopes 
and clean audio envelopes as a function of cochlear channel.

Psychophysical results
The correlation plots (Fig. 1) indicate that the visual enhancement process described 
above rendered degraded auditory envelopes to be more similar to their clean versions. 
A pilot experiment tested whether this enhancement process improved those aspects 
of the envelopes that are important for speech understanding. A vocoder scheme was 
used (Shannon, 1995), whereby the 135 envelopes – output directly from the periph-
eral model (audio-alone condition) or following enhancement using the visual chan-
nels (visually-enhanced condition) as described above – excited 135 noise bands pro-
duced by passing stationary Gaussian white noise through a linear filterbank of sixth 
order Butterworth filters with center frequencies the same as the peripheral model’s 
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BFs. Auditory signals were passed to the peripheral model in noise at a +6-dB SNR. 
For each listener, thirty IEEE (1969) sentences each were presented with the vocoder 
signal created from the noise-degraded audio envelopes, and with the audio envelopes 
enhanced using the visual inputs as described above. Note that all stimuli were pre-
sented to the listeners in the auditory domain. The enhancement provided a significant 
(p<0.05) improvement in mean performance from 42% to 82% of keywords correctly 
identified, indicating that the AV integration procedure successfully enhanced aspects 
of the auditory signal that are important for speech understanding. 

STMI predictions
The intelligibility of the noise-degraded and visually-enhanced envelopes was esti-
mated using the STMI. Following the procedure of Elhilali et al. (2003), a clean-
speech template was generated by processing 250 seconds of speech from the TIMIT 
(Garofolo, 1988) database at 65 dB SPL though the peripheral stage of the model, cre-
ating a cochlear spectrogram. The spectrogram was then passed through the cortical 
spectro-temporal model (Chi et al., 1999), which generates a four-dimensional repre-
sentation of the input stimulus in terms of the spectral and temporal modulation con-
tent as a function of time and tonotopic frequency. A similar procedure was then fol-
lowed for the IEEE test sentences from the AV integration model described above, with 
the audio-alone envelope outputs of the peripheral stage, or their visually-enhanced 
counterparts, passed though the cortical model. This was done for three sentences each 
at SNRs ranging from -12 to +12 dB in 6-dB steps, plus the quiet condition. 

To produce an estimate of speech intelligibility, the cortical representations for the 
template and each test item were collapsed across tonotopic frequency and time, yield-
ing a two-dimensional representation describing the spectral and temporal modula-
tion content of each stimulus. For each combination of SNR and modality (audio or 
visually-enhanced audio), the STMI was calculated based on the normalized distance 
between the template and the test signals in this two dimensional space:

             (Eq. 2)

where T and X represent the spectrotemporal content of the template and test stimulus, 
respectively, and ║∙║ represents the maximal singular value of the matrix.

Figure 2 shows the results of the STMI analysis (solid and dashed lines), along with 
intelligibility data for audio and AV IEEE sentences in steady-state noise averaged 
across three normal-hearing listeners (filled and unfilled circles). The model gener-
ally accounts for the main trends in the perceptual data. First, performance generally 
improves with SNR, which has been previously shown by Elhilali et al. (2003). More 
importantly for the current study, the inclusion of visual information provides a boost 
to the STMI score. Moreover, the visual benefit diminishes with increasing SNR, as 
intelligibility scores approach ceiling.
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Fig. 2: The STMI outputs of the cortical model in response to audio-alone and visually-
enhanced speech envelopes (solid and dashed curves) provide a resoanable qualitative 
fit to the mean intelligibility data measured in three normal-hearing listeners (circles).

DISCUSSION
The model presented here forms a first attempt at a general model of AV speech intel-
ligibility that makes predictions based on the audio and visual signals alone, akin to 
the auditory-only AI, SII and STI models, and not on phoneme recognition like pre-
vious AV speech models (Massaro, 1998; Braida, 1991). Based on the statistics of the 
signals alone, the model predictions yield a good qualitative fit to the perceptual data. 
Further adjustments will be required to improve quantitative fit. For example, tonoto-
pic weights from the SII could be added, or weighting functions could be implemented 
to place more emphasis on particular spectrotemporal modulation rates and scales. 
Ultimately, the goal of this modeling effort is to produce individual-specific mod-
els of speech intelligibility under audio-alone and AV conditions by applying the AV 
approach described here to the effort described by Summers et al. (2007) to make pre-
dictions of speech intelligibility by parameterizing the model of the auditory periph-
ery for individual hearing-impaired listeners.

CONCLUSIONS
Considerable challenges exist for models of speech intelligibility to account for a 
range of known aspects of speech intelligibility in everyday listening conditions. We 
have described a model that makes predictions of AV speech intelligibility based on the 
auditory and visual time waveforms alone, and is able to qualitatively account for the 
visual benefit to speech understanding. This forms one important step toward a com-
prehensive model of speech intelligibility.
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