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An auditory signal processing model is presented that simulates psychoacous-
tical data from a large variety of experimental conditions related to spectral 
and temporal masking. The model is based on the modulation filterbank model 
by Dau et al. [J. Acoust. Soc. Am. 102, 2892-2905 (1997)] but includes the 
dual-resonance non-linear (DRNL) filterbank suggested by Lopez-Poveda and 
Meddis [J. Acoust. Soc. Am. 110, 3107-3118 (2001)] to simulate the non-lin-
ear cochlear signal processing, as well as several other modifications at later 
processing stages motivated by other recent findings. The model was tested in 
conditions of tone-in-noise masking, intensity discrimination, spectral mask-
ing with tones and narrowband noises, forward masking with (on- and off-fre-
quency) noise- and pure-tone maskers, and amplitude modulation detection 
using different noise carrier bandwidths. One of the key properties of the model 
is the combination of the fast-acting cochlear compression with the slower 
compression realized in the adaptation stage of the model. Both play a crucial 
role for the success of this model.

INTRODUCTION
The perception model presented in Dau et al. (1997) was designed to account for 
human signal detection data in various psychoacoustic conditions. Rather than trying 
to model physiological details of auditory processing, the approach was to focus on the 
“effective” signal processing in the auditory system, which uses as little physiological 
assumptions and physical parameters as necessary, but tries to predict as many percep-
tual data as possible. The model has proven successful in predicting data from spectral 
and spectro-temporal masking (e.g., Verhey et al., 1999; Derleth and Dau, 2000), non-
simultaneous masking and modulation detection (Dau et al., 1996, 1997; Ewert and 
Dau, 2004). In addition, for example, the preprocessing of the model has been used in 
objective assessment of speech quality (Hansen and Kollmeier ,1999).

However, the original model uses the gammatone filterbank to simulate peripheral 
filtering and thus does not include nonlinearities associated with basilar-membrane 
(BM) processing (e.g., Ruggero et al., 1997). It can thus be expected that the model 
fails in conditions which reflect the nonlinear processing in the cochlea, such as for-
ward masking with on- and off-frequency maskers (e.g., Oxenham and Plack, 2000) 
and spectral masking patterns as a function of the masker level (e.g. Moore et al., 
1998). Meddis et al. (2001) developed a non-linear cochlear model, the dual-reso-
nance non-linear (DRNL) filterbank. They showed that their model can account for 
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several important properties of BM processing, such as frequency- and level-depend-
ent compression and frequency selectivity. The DRNL structure and parameters were 
later adopted to develop a human cochlear filterbank model (Lopez-Poveda and Med-
dis, 2001) based on pulsation threshold data. In the present study, the linear gamma-
tone filterbank stage in the original perception model (Dau et al., 1997) was replaced 
by the DRNL filterbank. Some additional changes were undertaken in the subsequent 
stages of the overall model, motivated by recent findings mainly from studies on mod-
ulation perception (e.g., Ewert and Dau, 2000; Kohlrausch et al., 2000). In the present 
study, the new model was tested in critical tasks of temporal and spectral masking.

THE MODEL
The new model (Figure 1) has a similar overall structure as the original model. The first 
stage is the DRNL filterbank (Lopez-Poveda and Meddis, 2001). The transformation 
of the mechanical BM oscillations into inner hair-cell receptor potentials is simulated 
roughly by half-wave rectification and low-pass filtering at 1-kHz. The signal is then 
transformed into an intensity-like representation, by applying a squaring expansion. 
This step is motivated by the findings in Müller et al. (1991) showing that the auditory-
nerve spike rate as a function of stimulus level exhibits a square-law behaviour.

Fig. 1: Sketch of the auditory processing model. The model includes outer- and middle 
ear filtering, DRNL filtering on the BM, hair-cell transformation, expansion, adaptation, 
a modulation filterbank and an optimal detector as decision stage.

The adaptation stage in the model simulates adaptive properties of the auditory periph-
ery. As in the original model, the effect of adaptation is realized by a chain of five 
feedback loops in series with different time constants. The output of the entire stage 
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approaches a logarithmic compression for stationary signals. For input variations that 
are rapid, compared with the time constants of the low-pass filters, the transformation 
through the adaptation loops is more linear, leading to a higher sensitivity for fast tem-
poral variations. The output of the adaptation stage is filtered by a 1st-order low-pass 
filter at 150 Hz, motivated by results from modulation detection data with sinusoidal 
carriers. (e.g., Ewert and Dau, 2000; Kohlrausch et al., 2000). 

The low-pass filter is followed by a modulation filterbank as proposed in Dau et al. 
(1997). The lowest modulation filter is a 2nd-order lowpass filter with a cutoff fre-
quency at 2.5 Hz. The modulation filters tuned to 5 and 10 Hz have a constant band-
width of 5 Hz. For modulation frequencies at and above 10 Hz, the modulation filter 
center frequencies are logarithmically scaled and the filters have a constant Q value 
of 2. The magnitude transfer functions of the filters overlap at their -3 dB points. As 
in the original model, the modulation filters are complex frequency-shifted first-order 
lowpass filters. These filters have a complex valued output and either the absolute 
value of the output or the real part can be considered. For the filters centered above 
10 Hz, the absolute value is considered. This is comparable to the Hilbert envelope of 
the bandpass filtered output and only conveys information about the presence of mod-
ulation energy in the respective modulation band, i.e., the modulation phase informa-
tion is strongly reduced. This is in line with the observation of decreasing monaural 
phase discrimination sensitivity for modulation frequencies above about 10 Hz (Dau 
et al., 1996; Thompson and Dau, 2008). For modulation filters centered at and below 
10 Hz, the real part of the filter output is considered. In contrast to the original model, 
the output of these low-frequency modulation filters is multiplied by a factor of √2, 
so that the rms value at the output is the same as for the higher-frequency channels in 
response to a sinusoidal AM input signal of the same modulation depth.

Internal noise is added in order to limit the resolution of the model. The decision device 
is realized as an optimal detector (Dau et al., 1996, 1997). The model was calibrated 
by adjusting the variance of the internal noise such that the model satisfies Weber’s law 
when considering an intensity discrimination task using pure-tone stimuli. 

EXPERIMENTS
The model was tested in a variety of experimental conditions, including tone-in-noise 
simultaneous masking, forward masking, and modulation detection and masking 
Jepsen et al. (2008). The present papers focuses on the model’s capabilities of predict-
ing spectral masking and forward masking. The data for the spectral masking experi-
ments were taken from Moore et al. (1998). The forward masking data represent own 
results (Jepsen et al., 2008).

Stimuli and procedure
In the spectral masking experiment, the signal and the masker were either a pure tone 
or a 80-Hz wide Gaussian noise (Moore et al., 1998). All four signal-masker configura-
tions were considered: tone signal and tone masker (TT), tone signal and noise masker 
(TN), noise signal and tone masker (NT), and noise signal and noise masker (NN). 
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In the TT-condition, a 90-degree phase-shift between signal and masker was chosen, 
while the other conditions used random onset phases. The masker frequency was cen-
tred at 1 kHz, and the signal frequencies were 0.25, 0.5, 0.9, 1.0, 1.1, 2.0, 3.0 and 4.0 
kHz. The signal and the masker were presented simultaneously. Both had a duration 
of 220 ms with 10 ms onset and offset squared-cosine ramps. Two masker levels were 
used: 45 and 85 dB SPL.

In the forward masking experiment, tonal signals and maskers were used. The stimuli 
were similar to those used in Oxenham and Plack (2000). Two conditions were con-
sidered: in the on-frequency masking condition, the signal and the masker were pre-
sented at 4 kHz. In the off-frequency condition, the signal frequency was still at 4 kHz 
whereas the masker frequency was 2.4 kHz. The signal had a duration of 10 ms and 
a Hanning window was applied to the entire signal duration. The masker was 200-ms 
long and had 2-ms ramps at the onset and the offset. The signal and the masker had 
random onset phases in both conditions. The signal level was varied during the exper-
imental procedure and the signal level at masked threshold was obtained for a given 
masker level. In the on-frequency masking condition, the masker was presented at lev-
els from 30 to 80 dB SPL, in 10-dB steps. In the off-frequency masking condition, the 
masker was presented at 60, 70, 80 and 85 dB SPL. The separation between masker 
offset and signal onset was either 0 ms or 30 ms.

RESULTS  
Spectral masking patterns

Fig. 2: Spectral masking patterns from the stimulus conditions TT, TN, NT and NN. 
Squares and circles show results for a masker level of 45 and 85 dB SPL, respectively. 
Open symbols indicate data (from Moore et al., 1998) while closed symbols represent 
simulations. The dashed curve shows simulation obtained with linear BM processing 
(from Derleth and Dau, 2000).
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Spectral masking patterns are plots of the amount of masking of a signal as a function 
of the signal frequency in the presence of a masker (with fixed frequency and level). 
The shapes of these masking patterns are influenced by a variety of factors, such as 
occurrence of combination tones or harmonics (produced by the peripheral non-line-
arities), beating cues, and resolved spectral components. The mean data from Moore 
et al. (1998) for the 1-kHz masker are shown in Fig. 2 as open symbols. The simulated 
masking patterns obtained with the current model are indicated by the filled symbols. 
In addition, simulations using the original processing model are shown by the dashed 
curves (Derleth and Dau, 2000). 

Panels A to D show the results for the different signal-masker conditions (TT, TN, NT, 
NN). Two masker levels are considered in each configuration: 45 dB SPL (squares) 
and 85 dB SPL (circles). The ordinate represents masking, defined as the difference 
between the masked signal threshold and the corresponding signal threshold in quiet. 
The masking patterns in the four conditions generally show a maximum at the masker 
frequency. The amount of masking decreases with increasing spectral separation 
between the signal and the masker. The 45-dB SPL masker produces a symmetric pat-
tern in all conditions, whereas the pattern for the 85-dB masker is asymmetric with a 
broadening towards higher frequencies.

For the TT condition (panel A), the amount of tuning in the masking patterns is partic-
ularly strong since beating between the signal and the masker provides a very effective 
detection cue in this condition. The predictions agree well with the experimental data, 
except for the threshold for the signal frequencies 500 and 750 Hz for the high masker 
level (85 dB), where the amount of masking is overestimated. The gray circles show 
additional simulations where only the first 8 modulation filters were included (with 
center frequencies from 0 to 130 Hz) whereas modulation channels tuned to higher 
frequencies were not considered. These additional predictions clearly overestimate the 
amount of masking, suggesting that beating between the signal and the masker with 
rates of 150 - 200 Hz provides an effective cue in this masking condition. 

For the tonal signal and noise masker (TN, panel B), the masking pattern is broader 
than in the TT-condition at frequencies close to the masker frequency; the strong peak 
at 2 kHz was not observed for the noise masker. This is also reflected in the simula-
tions. On the low-frequency side of the masker, the predictions are considerably better 
than those obtained with the original model. Thus, in this condition where energy cues 
play the most important role, the shapes of the level-dependent BM filters are mainly 
responsible for the good agreement between data and simulations.

For the NT condition (panel C), the amount of masking for the on-frequency situation 
is about 20 dB lower than in the previous two conditions (TT, TN). The reason for this 
“asymmetry of masking” effect is that signal detection for this on-frequency condition 
is based on the temporal structure of the stimuli (and not on energy), when the signal 
bandwidth is greater than the masker bandwidth (Hall, 1997). The simulated patterns 
agree well with the measured data, except for the signal frequencies 500 and 750 Hz 
at 85 dB SPL masker level. 
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Finally, the masking patterns in the NN-condition (panel D) are similar to those of the 
TN-condition. The simulations agree well with the measured patterns while the results 
obtained with the original model (dashed curve) clearly overestimate the masking on 
the low-frequency side of the masker by up to about 20 dB.

Forward masking with on- versus off-frequency tone maskers
The forward masking experiment of the present study was considered in order to test 
the ability of the new model to account for data that have previously been explained in 
terms of the nonlinear BM processing (e.g., Oxenham and Plack, 2000). It was shown 
that if masker and signal level (in the on-frequency condition) lie within the compres-
sive region of BM input/output function, the signal level at threshold changes linearly 
with changing masker level, i.e. reflecting a linear growth of masking (GOM) func-
tion. This is typically the case for very short masker-signal separations. In contrast, 
for larger temporal masker-signal separations, when the masker level may fall in the 
compressive and the signal level in the linear region of the BM input-output function, 
a change in masker level will produce a smaller change of the signal level at thresh-
old. This causes a shallower slope of the GOM function. For off-frequency stimula-
tion, with a masker frequency well below the signal frequency, the BM response at the 
signal frequency is assumed to be linear at all levels. The slope of the curves should 
therefore be roughly independent of the masker-signal separation for off-frequency 
stimulation. 

Fig. 3. GOM functions from the forward masking experiment. Panel A and B show the 
on-frequency and off-frequency condition, respectively. Triangles indicate a gap of 0 ms 
and circles a gap of 30 ms. Open symbols indicate data while black and gray symbols 
represent simulations with non-linear and linear BM processing, respectively.

Figure 3 shows the measured data from the own experiment, averaged across four sub-
jects. Signal level at threshold is shown as a function of the masker level, reflecting 
GOM curves. The left and right panels show the results for the on-frequency and off-
frequency conditions, respectively. Thresholds corresponding to a masker-signal sepa-
ration of 0 ms are indicated by triangles, and circles show the results for a masker-sig-
nal separation of 30 ms. In the on-frequency condition (left panel), the measured GOM 
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function is close to linear (0.9 dB/dB) for the 0-ms separation. For the larger masker-
signal separation of 30 ms, the slope of the growth of masking function is more com-
pressive (0.25 dB/dB) since signal and masker can be assumed to be processed in dif-
ferent level regions of the BM input-output function. The data agree with the results 
from Oxenham and Plack (2000) in terms of the slope of the GOM functions (0.82 dB/
dB for the 0-ms gap, and 0.29 dB/dB for the 30-ms gap).

The corresponding simulations are shown as filled symbols in the same figure. The 
simulated GOM functions for both masker-signal separations are close to the meas-
ured data. This supports the hypothesis that the non-linear BM stage can account for 
the different shapes of the forward masking conditions observed for different separa-
tions. For direct comparison, simulations obtained with the original model (Dau et al., 
1997), using a gammatone filterbank, are represented by the filled gray symbols. Since 
this BM stage processes sound linearly, the slopes of the GOM functions are similar 
for the two masker-signal separations, in contrast to the data.

The right panel of Fig. 3 shows the results for the off-frequency condition. The data 
(open symbols) show a 1.2 dB/dB slope of the GOM function for the 0-ms masker-sig-
nal separation, and a 0.5 dB/dB slope for the 30-ms separation. These data are not in 
line with the hypothesis that the GOM function for off-frequency stimulation should 
be independent of the gap-size. The data also differ from the average data in Oxen-
ham and Plack (2000) who found GOM functions in this condition with a slope close 
to one for all masker-signal separations. However, their average data showed substan-
tial variability; some of their individual subject’s data were clearly compressive while 
others were linear or slightly expansive. The corresponding simulations of the off-fre-
quency condition are represented by the filled symbols. The simulations agree well 
with the measured data from the present study. Within the model, the slightly compres-
sive GOM functions are caused by the adaptation stage, which compresses the long-
duration off-frequency masker slightly more than the short-duration signal. This slight 
compression can thus also be seen in the simulations obtained with the original model 
(gray symbols). In the 0-ms condition, the signal threshold levels lie generally in the 
compressive part (>30 dB SPL) of the BM input/output function. As a consequence, 
the GOM function is less compressive since the masker is still processed linearly. 

DISCUSSION
Several major modifications were introduced into the original perception model (Dau 
et al., 1997). The linear peripheral filterbank was replaced by the DRNL filterbank in 
order to account for the nonlinear processing at the level of the BM. Several additional 
changes such as a squaring expansion and modifications in the processing of ampli-
tude modulation were introduced, motivated by findings from other recent modeling 
studies. The question was to what extent the new model would be able to keep (and 
extend) the capabilities of the original model of predicting results from various per-
ceptual data. Here, spectral masking patterns and forward masking were considered. 
In the spectral masking task, signal detection is typically based on intensity cues, beat-
ing cues or resolved spectral components, depending on the specific signal-masker 
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configuration. These masking patterns are therefore interesting (and challenging) to 
test for any perception model. In the framework of the present model, the data can be 
accounted for by the combination of a (close to) logarithmic overall compression of 
the stimuli (realized mainly in the adaptation stage) with a high sensitivity to beatings 
between frequency components (realized in the modulation filterbank) and a “realis-
tic” stage of peripheral frequency selectivity (realized in the DRNL).

As a possible explanation for forward masking, mainly two different mechanisms have 
been discussed in the past: (i) Persistence of neural activity (e.g., Oxenham and Moore, 
1994), referring to temporal integration of neural activity at presumably higher stage 
the auditory nerve; and (ii) neural adaptation (e.g., Nelson and Swain, 1996) assum-
ing adaptation at various levels of the auditory pathway. The temporal window model 
(e.g., Oxenham and Moore, 1994) represents a temporal-integration mechanism while 
the model of the current study represents an adaptation mechanism. The temporal 
window model was shown to account for the on-frequency and off-frequency forward 
masking data (e.g., Oxenham, 2001) in normal-hearing and hearing-impaired listen-
ers. However, it should be noted that the decision mechanism in the temporal window 
model is based on the signal-to-masker (S/N) ratio at the output. It has been shown 
recently that the combination of integration and S/N detection criterion in the model 
acts essentially as adaptation (Ewert et al., 2006). The adaptation model might be the 
more general approach since it shows the effect of adaptation in the internal represen-
tation of the stimuli, similar to that observed in neural responses, and can be applied 
successfully to probably a broader class of experimental masking conditions than the 
temporal window model. Thus, the combination of fast-acting BM compression, fol-
lowed by fast acting (neural) expansion and a slower logarithmic compression allows 
the model to account for intensity-discrimination (Jepsen et al., 2008) and simultane-
ous masking as well as forward masking. 

Shamma and colleagues (e.g., Chi et al., 1999; Elhilali et al., 2003) described a model 
that is conceptually similar to the present model but includes an additional “dimen-
sion” in the signal analysis. They suggested a spectro-temporal analysis of the enve-
lope, motivated by neurophysiological findings in the auditory cortex (Schreiner and 
Calhoun, 1995; deCharms et al., 1998). In their model, a “spectral” modulation fil-
terbank was combined with the temporal modulation analysis, resulting in 2-dimen-
sional spectro-temporal filters. Thus, in contrast to the implementation presented here, 
their model contains joint (and inseparable) spectral-temporal modulations. In condi-
tions where both temporal and spectral features of the input are manipulated, the two 
models respond differently. The model of Shamma and co-workers has been utilized 
to account for spectro-temporal modulation transfer functions, for the assessment of 
speech intelligibility (Chi et al., 1999; Elhilali et al., 2003), the prediction of musical 
timbre (Ru and Shamma, 1997), and the perception of certain complex sounds (Car-
lyon and Shamma, 2003). The present model is sensitive to spectral envelope modu-
lation which is reflected as a variation of the energy (considered at the output of the 
modulation lowpass filter) as a function of the audio-frequency (peripheral) chan-
nel. For temporal modulation frequencies below 10 Hz, where the phase of the enve-
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lope is preserved, the present model could thus use spectro-temporal modulations as a 
detection cue. The main difference to the model of Chi et al. (1999), however, is that 
the present model does not include joint spectro-temporal channels. It is not clear to 
the authors of the present study to what extent detection or masking experiments can 
assess the existence of joint spectro-temporal modulation filters. The assumption of 
the model presented here that (temporal) modulations are processed independently at 
the output of each auditory filter, implies that no across-channel modulation process-
ing can be accounted for. This reflects a limitation of this model.

Recently, comodulation masking release (CMR) has been modeled using an equaliza-
tion-cancellation (EC) mechanism for the processing of activity across audio frequen-
cies (Piechowiak et al., 2007). The EC process was assumed to take place at the out-
put of the modulation filterbank for each audio-frequency channel. In that model, lin-
ear BM filtering was assumed. The model developed in the present study will allow a 
quantitative investigation of the effects of nonlinear BM processing, specifically the 
influence of level-dependent frequency selectivity, compression and suppression on 
CMR. The model might be valuable when simulating the numerous experimental data 
that have been described in the literature, and might in particular help interpreting the 
role of within-versus across-channel contributions to CMR. Another challenge will 
be to extend the model to binaural processing. The model of Breebaart et al. (2001) 
accounted for certain effects of binaural signal detection, while their monaural pre-
processing was based on the model of Dau et al. (1996), i.e., without BM nonlinear-
ity and without the assumption of a modulation filterbank. Effects of BM compression 
(Breebaart et al., 2001) and the role of modulation frequency selectivity (Thompson 
and Dau, 2008) in binaural detection have been discussed, but not yet considered in a 
common modeling framework. 

An important perspective of this model is the simulation of hearing loss and its conse-
quences for perception. This may be possible because the model now includes realis-
tic cochlear compression and level-dependent cochlear tuning. Cochlear hearing loss 
is often associated with lost or reduced compression (Moore, 1995). Lopez-Poveda 
and Meddis (2001) suggested how to reduce the amount of compression in the DRNL 
to simulate a loss of outer hair-cells for moderate and severe hearing loss. This could 
be used in the present modeling framework as a basis to predict the outcome of a large 
variety of psychoacoustic tasks in (sensorineural) hearing-impaired listeners.
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