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Currently, the clinical characterization of hearing deficits for hearing-aid
fitting is based on the pure-tone audiogram only. This relies on the assumption
that the audiogram can predict performance in complex, supra-threshold
tasks. Sanchez-Lopez et al. (2018) hypothesized that the hearing deficits
of a given listener, both at threshold and supra-threshold levels, result from
two independent types of auditory distortions. The authors performed a data-
driven analysis of two large datasets with results from several tests, which
led to the identification of four auditory profiles. However, the definition of
the two types of distortion was challenged by differences between the two
datasets in terms of the tests and listeners considered. In the Better hEAring
Rehabilitation (BEAR) project, a new dataset was generated with the aim
of overcoming these limitations. A heterogeneous group of listeners was
tested using measures of speech intelligibility, loudness perception, binaural
processing abilities and spectro-temporal resolution. As a consequence,
the auditory profiles of Sanchez-Lopez et al. (2018) were refined. The
updated auditory profiles, together with the investigation of optimal hearing-
aid compensation strategies, are expected to form a solid basis for improved
hearing-aid fitting.

INTRODUCTION

Hearing deficits are typically characterized by hearing loss severity as defined by
the World Health Organization. The severity and shape are assessed based on
the individual’s sensitivity to pure tones, i.e., the audiogram. However, while the
audiogram describes hearing thresholds, it does not reflect supra-threshold deficits. In
general, such deficits are not addressed systematically in clinical practice. Nowadays,
profiling has gained broad attention as a tool for typifying groups of observations
(e.g., users, recordings or patients) that follow similar patterns. Data-driven profiling
allows for uncovering complex and hidden structures in the data and has been used
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in psychology and audiology, for example in connection to hearing-aid features
(Lansbergen et al., 2020). Data-driven auditory profiling might thus help to identify
groups of listeners that are defined by specific hearing deficits, as a basis for
rehabilitative precision audiology.

Recently, Sanchez-Lopez et al. (2018) proposed a method for auditory profiling that
was tested and verified by analyzing two datasets from previous studies. Their method
is tailored to the hypothesis that a listener’s hearing deficits can be characterized
along two independent auditory distortion types, type-I and type-II. A normal-hearing
listener is placed at the origin whereas other listeners, with a hearing loss that differs
in the degree of the two types of distortion, are placed at different points in the two-
dimensional space. While profile C represents a high degree of both distortions, profile
B and D reflect hearing deficits dominated by one of the two distortions. Profile A, the
group with a low degree of distortions, represents near-normal hearing. Each type of
distortion would then covary with specific deficits observed in behavioral tasks, such
as temporal processing or modulation sensitivity, that define a given auditory profile.

In Sanchez-Lopez et al. (2018), it was hypothesized that distortion type-I covaries
with the audiometric thresholds, whereas distortion type-II is not related to audibility.
However, the results of the analysis of two different datasets did not confirm this
hypothesis. Distortion type-I was found to be connected to high-frequency hearing
loss and reduced speech intelligibility in the analysis of both datasets. In contrast,
distortion type-II was found to be linked to reduced binaural processing abilities in
the case of one dataset (Thorup et al., 2016) and to a low-frequency hearing loss in
the case of the other dataset (Johannesen et al., 2016). These mixed results were
attributed to differences between the two datasets in terms of listeners and behavioral
tests. It was concluded that there was a need for a new dataset that included listeners
with more heterogeneous audiograms to better define the distortions and, thus, the
auditory profiles. Furthermore, the tests should investigate several aspects of auditory
processing while being clinically feasible. In the Better hEAring Rehabilitation
(BEAR) project, a new dataset was therefore generated with the aim of overcoming
these limitations. The considered tests were chosen based on a literature review.

The resulting dataset includes a large and heterogeneous group of seventy-five
listeners that were tested in a clinical environment in several behavioral tasks divided
into five domains: audibility, loudness perception, binaural processing abilities,
speech perception and spectro-temporal processing. In the present study, the analysis
of the new dataset did not aim to disentangle the effects of audibility and supra-
theshold deficits but to identify four clinically relevant patient subpopulations by
refining the definition of the auditory profiles and the two types of distortions.
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METHOD

Description of the dataset

Seventy-five listeners participated in the study. Seventy participants presented various
degrees and shapes of symmetrical sensorineural hearing loss and five had near-normal
audiometric thresholds. The participants were recruited from clinical databases at
Odense University Hospital (OUH) and Bispebjerg Hospital (BBH). All listeners
completed the BEAR test battery described in Sanchez-Lopez et al. (2019). The
selected tests have shown potential for auditory profiling and their outcomes† may
be informative for hearing-aid fitting. Table 1 summarizes the chosen tests.

Name of the test Category Variables†

A. Pure-tone audiometry Audibility AUDxF
B. Fixed level frequency threshold FLFT
C. Word recognition scores Speech SRTQ, maxDS
D. Hearing in noise test Perception SRTN, SS4dB

E. Maximum frequency for IPD detection Binaural IPDfmax
F. Binaural pitch processing BP20
G. Extended binaural audiometry in noise abilities BMR
H. Adaptive categorical loudness scaling Loudness HTLxF, MCLxF

perception DynRxF, SlopexF
I. Fast spectro-temporal modulation Spectro- sSTM8, fSTM8

sensitivity temporal TiNxF
J. Extended audiometry in noise processing SMRxF, TMRxF.

Table 1: Overview of the tests used for the collection of the BEAR dataset.
The tests are divided by categories, and the outcome variables are presented in
the right column. When a variable is frequency specific, the sufix xF follows
the variable. It can be LF for lower frequencies or HF for higher frequencies.

The results of the tests were processed in a similar fashion as in Sanchez-Lopez et al.
(2018). First, for each of the tests, the outcome measures of interest were extracted
from the raw results. When the tests had frequency specific values, the results were
grouped into low (≤ 1 kHz) and high (> 1 kHz) frequency averages. In case of
monaural examination, the mean of the two ears was used. The variables with more
than 12 missing data points were excluded as well as listeners with more than two
missing outcome measures. The data were then normalized between the 25th and
75th percentiles. In total, 26 variables were selected from the outcome measures, as
shown in Table 1.

Unsupervised learning

The data-driven analysis used here is based on the unsupervised learning stage of
the method described in Sanchez-Lopez et al. (2018). This is divided into three

†The outcome variables are further explained in Sanchez-Lopez et al. (2019)
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steps: I) Dimensionality reduction: based on principal component analysis (PCA),
a subset of variables highly correlated with the principal components PC1 and PC2
was kept for the following steps; II) Archetypal analysis: the data were decomposed
into two matrices, the test matrix, which contained the extreme patterns of the data
(archetypes), and the subject matrix, which contained the weights of each archetype.
A given subject can then be represented as a convex combination of the archetypes.
The analysis was limited to four archetypes; III) Profile identification: the subject
matrix was used to estimate the distance between observations and the four archetypes.
Each listener was then assigned to an auditory profile based on the nearest archetype.

In the present study, the method for profile identification was refined according to
the following modifications: 1) Iterative bagging: Since a data-driven analysis can be
highly influenced by the data themselves, here, the data were decimated randomly in
terms of listeners and tests. Then, one thousand iterations of the steps I, II and III were
performed with only 83% of the data (69 listeners and 24 variables); 2) Dimensionality
reduction: Since the use of several correlated variables in PCA can bias the results,
the dimensionality reduction was refined by removing highly correlated variables. If
two variables resulting from step I were highly correlated (Pearson’s r > 0.85), one
of them was dropped and this step repeated. The number of selected variables (6, 8
or 10) was also randomly chosen in each iteration; 3) Profile identification: Instead
of using the criterion of the nearest archetype, listeners with a weight larger than 0.5
for one of the four archetypes were identified as belonging to that auditory profile.
Otherwise, they were left “unidentified”.
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Fig. 1: Square representation result of the data-driven method. Left panel:
results from the Sanchez-Lopez et al. (2018) method where the listeners are
represented based on the subject matrix of the archetypal analysis. Right
panel: results from the refined method where the listeners’ representation
is based on the probabilities. The listeners indicated by grey squares show
a low probability of belonging to any of the four profiles (P < 0.5) and
listeners labelled as ∗Number∗ show a high probability ( P > 0.5) of being
”unidentified”.
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The final output of the refined method is the probability of being identified as
belonging to an auditory profile. This was estimated by the fraction of times a
listener was assigned to a profile after the 1000 iterations. The probability of being
”unidentified” was also calculated.

RESULTS

The left panel in Figure 1 shows the results of the data-driven auditory profiling as
used in Sanchez-Lopez et al. (2018). Listeners are located in the square representation
based on the results of the archetypal analysis. The representation does not show
clear clusters and the listeners identified as belonging to an auditory profile may have
been wrongly identified. The right panel shows the results of the refined method
where the listeners are located in the two-dimensional space based on the probability
of belonging to any of the four auditory profiles. Listeners located close to a corner
exhibited a high probability of belonging to that profile and four clear clusters can now
be observed. The ”unidentified” listeners are placed in between the four quadrants.

Fig. 2: Results of the ACALOS measurements presented in terms of hearing
thresholds (HTL), most comfortable level (MCL) and uncomfortable levels
(UCL). Results are divided by profiles (solid lines) and averaged across the
whole dataset (dashed line).

Figure 2 shows average hearing threshold levels (HTL) as well as the corresponding
interquartile ranges, most comfortable levels (MCL) and uncomfortable levels (UCL)
(5). Profiles A and D (left panel) exhibit a mild-to-moderate high-frequency hearing
loss with hearing levels below the average high-frequency hearing loss (dashed line).
The difference between profiles A and D is at low frequencies where profile D exhibits
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thresholds that are more elevated than the average values (& 30 dB HL). Profiles B and
C (right panel) also exhibit a high-frequency hearing loss but with values above the
average (& 45 dB HL). The difference between profiles B and C is mainly in terms of
the low-frequency hearing thresholds where profile C exhibits a low-frequency hearing
loss that is above the average values.
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Fig. 3: Boxplots of the results from suprathreshold measures. Left: Unaided
speech intelligibility in speech-shaped noise (SSN). Right: Binaural pitch
detection. In each panel, the average data of the whole group of the hearing-
impaired (HI) listeners and the normal-hearing (NH) listeners are shown on
the left, whereas the results for the sub-populations according to the profiles
are shown on the right.

Figure 3 (left panel) shows unaided speech reception thresholds (SRT) measured
for sentences presented in speech-shaped noise. The median SRT for the hearing-
impaired (HI) listeners data was at about 2.5 dB signal-to-noise ratio (SNR). Profiles
A and D showed a better performance (median: ≈ 1 dB SNR) than profiles B and C
(median: ≈ 4-5 dB SNR).

The right panel of Figure 3 shows the results from the binaural pitch detection test.
The detection scores for listeners with profiles A, B and D were significantly higher
(better performance) than for the listeners with profile C. Some profile C listeners
were not able to detect the dichotic pitch percept, whereas they could detect the diotic
pitch.
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DISCUSSION

The refined method showed four clusters of listeners with significant differences in
terms of several supra-threshold tasks. In the previous study of Sanchez-Lopez et
al. (2018) the data-driven analysis of the Thorup et al. (2016) data set showed that
distortion type-II was associated with binaural processing abilities in listeners with
near-normal or mild-moderate high-frequency hearing loss. The binaural pitch test
was found to be the most relevant prediction in that study and the listeners in profiles
DT
∗ and CT showed scores lower than 95 %. In the present study, only listeners

with profile C showed such a behaviour. In contrast, the analysis of the Johannesen
et al. (2016) data set in Sanchez-Lopez et al. (2018) showed that distortion type-
II was associated with outer hair cell loss at low frequencies and their participants
had moderate-to-severe hearing loss. Profiles DJ

† and CJ showed higher audiometric
thresholds and a loss of cochlear non-linearity at low frequencies. In the present study,
the results are in better agreement with the analysis performed on the Johannesen et
al. (2016) data set than on the Thorup et al. (2016) data set. This suggests that the use
of data from a representative sample of different degrees of hearing loss and a normal
hearing reference was crucial for a robust profile-based hearing-loss characterization.

The audiometric thresholds corresponding to the four robust auditory profiles were
significantly different in terms of the degree and shape of the hearing loss. Inter-
estingly, the four audiometric profiles look similar to the audiometric phenotypes
of Dubno et al. (2013). According to this view, the flat “attenuation” observed in
profile D may be ascribed to a metabolic hearing loss (endocochlear potential loss)
and the sloping hearing loss observed in profile B may be associated with a sensory
loss. Metabolic hearing loss yields flat elevated thresholds but does not affect speech-
intelligibility in noise (Pauler et al., 1986), which is consistent with the results of the
present study. Furthermore, according to Plomp’s model, profiles B and C exhibited
a distortion component because of their elevated speech reception thresholds in noise
(Plomp, 1978). (Wu et al., 2020) carried out an accompanying study assessing aided
speech-in-noise performance with the same test participants. Their results also showed
elevated SRTN for the listeners with profiles B and C suggesting that amplification did
not fully compensate for their hearing deficits.

CONCLUSION

Based on a refined data-driven method and a new dataset, a solid definition of the
auditory profiles was obtained. The different profiles showed significant differences in
terms of low- and high-frequency hearing loss, speech-in-noise intelligibility, binaural
processing abilities and spectro-temporal modulation sensitivity. Overall, the results
of the present study suggest that the shape and degree of sensitivity loss can be

∗The subindex T refers to the profiles from the analysis of Thorup et al. (2016)
†The subindex J refers to the profiles from the analysis of Johannesen et al. (2016)
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a consequence of specific impairment mechanisms with associated supra-threshold
deficits. Moreover, stratifying the listeners in clinically relevant subgroups has
potential for further investigating the independence of sensitivity vs supra-threshold
deficits as well as physiological correlates of the perceptual auditory distortions.
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