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Representation of amplitude modulation (AM) has been characterized by 
neurophysiological and psychophysical modulation transfer functions 
(MTFs). Our recent computational study demonstrated that a deep neural 
network (DNN) trained for natural sound recognition serves as a good model 
for explaining the functional significance of neuronal MTFs derived 
physiologically. The present study addresses the question of whether the 
DNN can provide insights into AM-related human behaviours such as AM 
detectability. Specifically, we measured “psychophysical” MTFs in our 
previously developed DNN model. We presented to the DNN sinusoidally 
amplitude-modulated white noise with various AM rates, and quantified AM 
detectability as d′ derived from the model’s internal representations of 
modulated and non-modulated stimuli. The overall d′ increased along the 
layer cascade, with human-level detectability observed in the higher layers. 
In a given layer, the d′ tended to decrease with increasing AM rates and with 
decreasing AM depth, which is reminiscent of a psychophysical MTF. The 
results suggest that a DNN trained for natural sound recognition can serve as 
a model for understanding psychophysical AM detectability. Since our 
approach is not specific to AM, the present paradigm opens the possibility of 
exploring a broad range of auditory functions that can be evaluated by 
psychophysical experiments. 

BACKGROUND 
Amplitude modulation (AM) is an important physical dimension for natural sound 
recognition. For example, humans can recognize speech and other natural sounds with 
a deteriorated temporal fine structure if the amplitude envelopes of the sounds are 
preserved (Shannon et al., 1995; Gygi et al., 2004). 
Numerous neurophysiological studies have sought to reveal how the auditory system 
represents AM. They have found that the spike synchrony to the stimulus AM and the 
average spike rate in neurons in the auditory system exhibit tuning to the AM rate. 
Tuning to the AM rate is often characterized by a modulation transfer function (MTF), 
which is defined as the spike synchrony or average spike rate as a function of the AM 
rate. Interestingly, peak AM rates and the upper cutoff frequencies of the MTFs 
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systematically transform along the cascade of the brain regions in the auditory system 
(Joris et al., 2004). 
In our previous study, we asked an alternative question: why does the auditory system 
represent AM in such ways (Koumura et al., 2019)? To explore the functional 
significance of the systematically transforming MTFs, we built a computational model 
that can perform a behaviourally meaningful task, namely natural sound recognition. 
Specifically, we trained a deep neural network (DNN) for the task and analysed the 
AM representation in it. A DNN is suitable for modelling the auditory system in two 
ways. First, it can perform natural sound recognition, which is one of the most 
important functions of the auditory system. Functions such as vocal communication 
and sound localization are of similar importance, but in this study we only focused on 
natural sound recognition. Second, it consists of a cascade of layers, which is similar 
to the cascade of brain regions in the auditory system (see Fig. 30-12 in Kandel et al. 
(2000)). 
To directly compare the AM representation in the DNN with that revealed by 
neurophysiological studies, we performed single-unit recording in the trained DNN. 
We found that similar transformation of MTFs along the layer cascade in the DNN 
emerged as a result of the training for natural sound recognition. The similarity 
gradually increased in the course of the training. The results suggest that AM tuning 
in the auditory system might also be a result of optimization for natural sound 
recognition in animals in the course of evolution and development. 
While neurological studies have investigated the neural representation of AM, 
psychophysical studies have sought to characterize behavioural responses to it. They 
have found the dependency of sensitivity to AM on AM rates, which is characterized 
by a psychophysical MTF defined as the AM detection threshold as a function of the 
AM rate. For example, when broadband noise is used as the stimulus carrier, an MTF 
takes the form of a low-pass filter, with the detection threshold decreasing about 3 dB 
per octave (Viemeister, 1979). 
The present study addresses the question of whether such psychophysical properties 
also emerge in the DNN trained for natural sound recognition and to what extent they 
are similar to those observed in humans. We conducted a psychophysical AM 
detection experiment in our DNN (Fig. 1). To characterize AM sensitivities in the 
DNN, we calculated sensitivity index d′ based on the representation of the stimuli in 
each layer and each unit, and defined the detection threshold as the minimum AM 
depth required to yield a certain value of d′. The MTFs in the middle layers were 
similar to those in humans, whereas an untrained DNN was not as sensitive to AM as 
humans are. The results suggest that not only neurophysiological MTFs but also 
psychophysical MTFs can be compared between the auditory system and DNNs to 
better understand why the MTFs have specific forms. 
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METHODS 

Training of the DNN 
As a model, we used the DNN we built in our previous study (Koumura et al., 2019). 
Here we briefly explain the model and the training procedure. The DNN consists of 
13 temporally dilated convolutional layers, and each layer consists of 128 units. All 
layers operate with 44.1 kHz sampling frequency. 

 
Fig. 1: Our approach. In an AM detection experiment, humans try to 
discriminate modulated stimuli from unmodulated stimuli (left). We 
simulated this procedure by trying to discriminate modulated and 
unmodulated stimuli from DNN’s representation at the level of single layers 
or single units (right). 

The DNN was trained for natural sound recognition. The input was a 0.19 s segment 
of natural sound, and the DNN’s task was to estimate the category of the input sound. 
The sound data was a subset of ESC-50 (Piczak, 2015). The original dataset is divided 
into 5 folds. We used folds 1–4 for training and fold 5 for validation. The classification 
accuracy for the validation set was 45.1%. Due to space limitations, the details of the 
hyper-parameters and training procedures are not fully described here. They are 
provided in our previous paper (Koumura et al., 2019). 

Stimulus for AM detection experiment  
As a stimulus, we used modulated and unmodulated white noise. The duration of the 
stimulus was 0.5 s, and raised cosine ramps of 50 ms were applied. The starting phase 
of AM was fixed at 0. The duration of the stimulus and ramps and the starting phase 
were the same as in Viemeister (1979). The overall amplitude was scaled so that the 
root mean square (RMS) of the stimulus was equal to the average root mean square 
(RMS) of the training data. The amplitude was scaled before modulation was applied 
as in Viemeister (1979). All carrier white noises were independently sampled trial by 
trial. 

RESULTS 

Representation of modulated and unmodulated sounds in a single layer 
First, we visualized the representation of modulated (AM rate = 32 Hz; depth = −10 
dB) and unmodulated white noise in the 7th layer as an example. Response time 
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courses in the 128 units were recorded in a single layer (Fig. 2). Responses to 32 
modulated and 32 unmodulated noises in all units were concatenated, and their 
dimension was reduced to 4 by principle component analysis (PCA). We confirmed 
that the results obtained with 2- or 8-dimensional PCA were similar to those with 4-
dimensional PCA. Visualizing the first two principle components indicates that in the 
7th layer, AM with 32 Hz and −10 dB depth was well discriminated from unmodulated 
noises (Fig. 3). 

 

Fig. 2: Examples of stimuli and the 
DNN’s responses. One sample of the 
noise stimulus is shown for each of the 
modulated and unmodulated stimuli. 
Responses in unit #1 and #128 in the 7th 
layer are shown. 

 

 

Fig. 3: Two-dimensional visualization of the AM 
representation in the 7th layer. Responses to 32-Hz 
modulated and unmodulated noises are shown. Since 
our model is deterministic, the only cause of the 
response variability is the variability of input noises. 
The horizontal and the vertical axes show first- and 
second-principle components, respectively. 

Sensitivity index 
As a measure of AM sensitivity, we calculated d′ for AM detection based on the 
representations in each layer. The 4-dimensional representations of the 32 modulated 
and 32 unmodulated white noises were further projected onto a 1-dimensional axis 
with maximum detectability in terms of a linear discriminant analysis. The d′ was 
calculated from the means and variances of the 1-dimensional representation 
(Averbeck and Lee, 2006). 
Fig. 4 shows d′ in the 7th layer for 32 Hz AM. The d′ appeared constant and low with 
shallow AM, and at a certain AM depth it started to increase linearly on a logarithmic 
scale. This trend—sensitivity increasing with AM depth—is reasonable when 
considering the stimulus charactersitics. In theory, the shallower the AM, the more 
difficult it will be to detect it. Having observed this trend, we fitted a broken line with 
two segments to the d′ on a logarithmic scale. One of the segments for the lower depth 
was assumed to be constant. The mean squared error of the fitted lines and measured 
logarithmic d′ was 0.024 ± 0.013 (mean ± standard deviation over all AM rates and 
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all layers). From the fitted lines, we defined the detection threshold as the AM depth 
at d′ = 1.089, which corresponds to 70.7% correct, assuming the responses follow a 
normal distribution. As in the standard psychophysical studies, an MTF was defined 
as the AM detection threshold as a function of AM rate. 

 

Fig. 4: The d′ in the 7th layer for 32-Hz AM rate 
(crosses) and fitted lines. Horizontal and vertical 
dashed lines indicate d′ = 1.089 and the detection 
threshold, respectively. 
 

The d′ was calculated for multiple AM rates and depths in each layer (Fig. 5, upper 
panels). The calculated values were large for deep and slow AM, and they were also 
large in the higher layers. The detection threshold in the DNN and humans are 
compared in the lower panels of Fig. 5. MTFs in the middle layer took the form of a 
low-pass filter with constant d′ up to around 8 Hz and the slope of approximately 3 
dB/octave, which is similar to those in humans, although there seems to be a constant 
discrepancy. 

MTFs in a single unit 
The above analysis was a comparison between human MTFs and an MTF in a single 
layer, calculated from the concatenated response timecourses in all units. Next, we 
calculated an MTF in each unit. MTFs varied among units (Fig. 6, upper panels). 
Interestingly, in the middle layer, their envelope aligned with the human MTFs. This 
is more clearly seen by connecting the most sensitive MTFs (Fig. 6, lower panels). In 
the middle layer, the envelope of the unit MTFs was very similar to that of human 
MTFs without a constant discrepancy. 

AM sensitivity in the untrained DNN 
The observed AM sensitivity could be a consequence of the training for natural sound 
recognition or could be explained by the architecture of the model with cascaded 
convolutions. To test these possibilities, we calculated the d′ in an untrained DNN as 
a control experiment. The connection weights in the untrained DNN were randomly 
sampled from the normal distribution, and its activity bias was 0 (He et al., 2015). The 
d′ in the untrained DNN was much lower than those in the trained DNN, indicating 
that representations in the untrained DNN were not sensitive to the stimulus AM (Fig. 
7). The results suggest that parameter optimization is necessary for AM sensitivity. It 
is worth noting again that our DNN is optimized for natural sound recognition, not for 
AM sensitivities in humans. 
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Fig. 5: Sensitivity index and MTF in each layer. The d′ is colour-coded in the 
upper panels. The lower panels show MTFs in our DNN (solid lines) and in 
humans (dotted lines, Viemeister (1979)). We also plotted lines indicating 
– 3dB/octave (dashed-dotted lines) as in Viemeister (1979). 

 

 
 

Fig. 6: MTFs in single units (upper) and their envelopes connecting the most 
sensitive MTFs for each AM rate (lower). Dotted lines and dashed-dotted 
lines are the same as Fig. 5. 

DISCUSSION 
We analysed AM sensitivity in the DNN trained for natural sound recognition and 
found that MTFs similar to those in humans emerged in the middle layers. The 
untrained DNN did not exhibit high sensitivity. These results, together with the 
neurophysiological analysis in our previous study, suggest that AM sensitivity in 
humans might be a result of optimization for natural sound recognition. 
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Fig. 7: MTFs in the untrained DNN. Other conventions, including the color 
scale of d′, are the same as in Fig. 5. 

In our previous study, DNNs trained with speech signals exhibited neurophysiological 
MTFs similar to those trained with natural sounds. Therefore, we expect that they 
would also show psychophysical MTFs similar to those obtained in this study. 

Comparison of MTFs in the DNN and in humans 
Although the form of the MTF in the middle layer was similar to those in humans, 
there was a constant discrepancy of around 4 dB, indicating that humans are a little 
more sensitive to our layer representation. On the other hand, single units can be as 
sensitive as humans if units with maximum sensitivity are recruited for each AM rate. 
Thus, it may be possible to model human MTFs by combining MTFs with the most 
sensitive units. Our previous neurophysiological simulation suggested that unit 
activities in the middle layers of the DNN may be a model of neural activities in the 
brainstem. When taken together with the present results, it appears that humans might 
integrate outputs in the most sensitive neurons in the brainstem to yield responses in 
an AM detection task. 

Future work 
The present study only tested an AM stimulus with broad band noise carriers. 
Psychophysical MTFs have been measured using various carriers, such as those with 
narrowband noise (Dau et al., 1997), and it has been shown that an MTF depends on 
the type of carrier. In addition, other types of modulation, such as second-order 
modulation, has been tested in humans (Lorenzi et al., 2001). Testing other types of 
stimuli in our model remains as future work. 
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