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To characterize the individual patient’s hearing impairment, a framework for 
auditory discrimination experiments (FADE, Schädler et al., 2015) was 
extended here using different degrees of individualization. FADE has been 
shown to predict the outcome of both speech recognition tests and 
psychoacoustic experiments based on simulations using an automatic speech 
recognition (ASR) system which  requires only few assumptions. It builds on 
the closed-set matrix sentence recognition test which is advantageous for 
testing individual speech recognition in a way comparable across languages. 
Individual predictions of speech recognition thresholds in stationary and in 
fluctuating noise were derived using the audiogram and an estimate of the 
internal detector noise (“level uncertainty”). Either “typical” audiogram 
shapes with or without a “typical” level uncertainty or the individual data 
were used for individual predictions. As a result, the individualisation of the 
level uncertainty was found to be more important than the exact shape of the 
individual audiogram to accurately model the outcome of the German matrix 
test in stationary or fluctuating noise for listeners with hearing impairment.  

INTRODUCTION  

Recent progress in computational modelling of the normal and impaired auditory 
system nurtures the hope that a better understanding is achieved of how hearing 
impairment affects speech communication in daily life. This will help to construct and 
assess more effective hearing devices. A first approach to provide a model framework 
which might be developed into an “objective yard stick” in rehabilitative audiology is 
considered here: The prediction of speech recognition thresholds (SRTs) in noise for 
an individual based on known audiological data (such as, e.g., the audiogram or 
measures of supra-threshold processing deficits). By comparing the predictions with 
the individual empirical SRTs, any special problems of the patient in understanding 
speech in noise other than explainable from his/her audiogram (such as, e.g., due to 
auditory neuropathy or more central or cognitive components of hearing impairment) 
may become obvious.  
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Traditional modelling approaches for speech recognition are either based on 
predefined features (like an energy increase in a certain auditory band) or on  
instrumental measures that are calibrated using a set of reference thresholds (like the 
Articulation Index or Speech Intelligibility Index-based methods, see ANSI 1997; 
Meyer and Brand, 2013). More sophisticated approaches are based on 
psychoacoustical processing models (e.g., Holube and Kollmeier, 1996, Dau et al., 
1997; Jürgens and Brand, 2009), but require an “optimal detector” that possesses 
perfect prior knowledge about the to-be-recognized signals. The strong assumption of 
an optimal detector provides the model with an unfair advantage over human listeners 
that perform the same task, and may even weaken the need of an optimum auditory-
system-inspired processing front end to achieve human-like performance, which, in 
turn, could be crucial to accurately model human sound perception. 

An alternative way of predicting both sentence recognition thresholds and 
psychoacoustic performance using automatic speech recognition (ASR) without 
requiring a predefined reference or an optimal detector was recently proposed by 
Schädler et al. (2015; 2016). They predicted the outcome of the German matrix 
sentence recognition test (Kollmeier et al., 2015) for different types of stationary 
background noise using Mel-frequency cepstral coefficients (MFCCs) as a front-end 
and whole-word Gaussian mixture/hidden Markov models (HMMs) as a back-end. By 
training and testing the ASR system with noisy matrix sentences on a broad range of 
signal-to-noise ratios (SNRs) they were able to predict SRTs for listeners with normal 
hearing with a remarkably high precision, outperforming SII-based predictions. In a 
second study, they extended the so-called simulation framework for auditory 
discrimination experiments (FADE) to successfully simulate basic psychoacoustical 
experiments as well as more complex Matrix sentence recognition tasks with a range 
of feature sets (front-ends). Schädler et al. (2015) concluded that the proposed FADE 
framework is able to predict empirical data from the literature with a single set of 
parameters, less assumptions compared to traditional modelling approaches, and 
without the need of an empirical reference condition.  

The aim of the current study is to extend the FADE approach to model the effect of 
hearing impairment on speech recognition thresholds obtained with the German 
Matrix test in stationary and fluctuating noise. Therefore, different degrees of 
individualization for the model predictions were employed and compared with the 
empirical results for 99 normal-hearing and hearing-impaired listeners (198 ears). 

METHODS 

FADE approach  

The simulation framework for auditory discrimination experiments (FADE) from 
Schädler et al. (2016) was used to simulate the outcome of the German Matrix test in 
a stationary and a fluctuating noise condition (see Schädler et al., 2015, for details). 
The speech material consists of 120 recorded semantically unpredictable sentences 
with a fixed syntax (name-verb-number-adjective-object, like “Peter sees eight wet 
chairs”.) For each word class, ten alternatives exist. The adaptively determined SRT 
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denotes the SNR that corresponds to 50%-words-correct performance. To obtain 
SRTs with FADE, an automatic speech recognizer (ASR) was trained and tested with 
noisy sentences on a broad range of SNRs (−24dB to +6dB), and the lowest SNR 
which resulted in 50%-words-correct recognition performance was interpolated and 
used as the predicted SRT. The ASR system used modified MFCCs as a front-end. 
On the back-end side, HMMs were used to model speech with whole-word models 
based on a “parametrically hearing-impaired” acoustical representation provided by 
the front-end. Hearing impairment was modelled in the front-end and implemented in 
the log Mel-spectrogram (logMS) from which the MFCC features were derived. A 
frequency-dependent attenuation was used to model an attenuation-loss (A) by 
clipping the amplitude values in each channel to the corresponding (interpolated) 
threshold from the audiogram. To model a supra-threshold distortion loss (D), a level 
uncertainty was implemented in the logMS by adding a Gaussian white noise with a 
standard deviation of uL.  

Audiological Data  

Results from Brand and Kollmeier (2002) were used for comparing the predictions 
with empirical data. The data included measurements from 99 listeners (198 
separately measured ears) ranging in age from 23 to 82 years (mean and standard 
deviation: 61.4 ± 13.2 years) and covering a broad range of hearing loss with the PTA 
varying from 0 to 80 dB HL (mean: 40.5 ± 16.1 dB HL). SRTs were obtained with 
the German matrix test in stationary ICRA1 and fluctuating ICRA5-250 noise. The 
ICRA5-250 noise is a speech-like modulated noise which simulates the long-term 
frequency spectrum and modulation properties of a single male speaker with silent 
intervals limited to 250 ms (Wagener et al., 2006). The same noise condition was used 
in a study of Meyer and Brand (2013) with 113 listeners (of whom the 99 listeners 
considered here are a subgroup). They considered three extensions of the Speech 
Intelligibility Index (SII) for predicting SRT in stationary and fluctuating noise: A) 
original SII, B) considering frequency-independent level fluctuation of the noise, C) 
considering frequency-dependent level fluctuations of the noise, and D) considering 
frequency- dependent fluctuations of the speech and the noise.  

RESULTS AND DISCUSSION 

Audiogram-based predictions without suprathreshold distortions 

Figure 1 shows the simulated SRTs for the 7 typical audiograms for flat and 
moderately sloping hearing loss defined by Bisgaard et al. (2010) as a function of the 
level of the stationary, test specific noise (solid lines). The simulations for the 
remaining 3 typical audiograms are not shown here to preserve the separability across 
curves. In general, the curves follow the pattern proposed by Plomp (1978) who 
separated an “Attenuation” component (A) from a “Distortion” component (D) of the 
hearing loss to derive the SRT as a function of noise level (NL). A power-law 
additivity parameter P was also introduced here to better reflect the fluctuating noise 
condition: 
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Fig. 1: Speech recognition thresholds (SRTs) for the German matrix sentence 
test in the test-specific, stationary noise condition as a function of the noise 
level from simulations with FADE (solid lines). The curves correspond to 
different grades of hearing impairment based on the seven standard 
audiograms for flat and moderately sloping hearing loss from Bisgaard et al. 
(2010). The dashed lines show the same results for the fluctuating ICRA5-
250 noise. The embedded table reports the attenuation (A) and distortion (D) 
components (in dB) and the power coefficient P of the best-fitting Plomp 
curves.  

 

SRTPlomp=10log10 10
A+D *P

10 +10
NL+D *P

10 P         (Eq. 1) 

For a given hearing loss, the SRT in quiet is dominated by A+D (horizontal part of 
the curves). With increasing noise level NL, a transition region (controlled by P) 
occurs until a constant SNR at SRT is achieved across a wide range of noise levels 
which reflects the D-value. The A-, D- and P- values fitted to the simulated curves 
using the Plomp (1978) formula for the different typical audiograms are given in the 
insert table in Fig. 1. Note that most of the variation across the typical audiograms are 
captured by the variation in the “Attenuation” component, whereas only the more 
severe hearing losses require an additional “Distortion” component which also reflects 
some deviation of the audiogram shape from the standard speech spectrum.   

To test the non-individualized SRT predictions based on the audiogram alone (i.e., 
without suprathreshold processing impairment), Fig. 2A displays the predictions from 
the “typical” audiograms in Fig. 1 for the individual SRT in stationary ICRA1-noise. 
The SRT predictions obtained by interpolating across the 10 prototype audiograms 
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Fig. 2: Modelled speech recognition thresholds (SRTs) for 198 ears from 99 
subjects plotted against the empirical data (x-axis). Panel A: Stationary noise, 
non-individualized predicted SRT (black dots) obtained from the respective 
best-fitting typical audiogram compared to the individually simulated SRT 
(grey dots) using the FADE approach with the individual audiogram data. 
Panel B: Fluctuating noise, predicted SRT from typical audiogram (black 
dots) vs. individually simulated (grey dots) taking into account the individual 
level uncertainty uL estimated from the stationary noise condition. 
 

(black dots) are plotted against the empirical values (given on the x-axis). For 
comparison, the individualized FADE simulations are given as grey symbols using 
the individual audiogram. The connection lines between the predicted values (that 
require only a very small computational load) and the simulated values (that are 
computationally expensive) indicate already a high coincidence in SRT prediction 
between both methods. However, neither method is able to model the empirical SRT 
in stationary noise in a satisfactory way since the large spread in the empirical data 
(ranging from −9 dB to + 7dB in SNR) is not reflected in the predictions based on the 
audiogram alone.  

Modelling suprathreshold distortion as level uncertainty 

Figure 3 displays the simulated SRT using the FADE approach for a normal 
audiogram with a set of fixed “level uncertainty parameter” uL-values in order to 
model an increasing amount of supra-threshold distortions. Note that the curves 
exhibit a parallel shift to higher SRT values with increasing parameter uL which is 
very similar to the effect of the D-parameter of the Plomp model. However, an 
increase by 10 dB in the level uncertainty parameter uL does not translate directly into 
an equally-spaced increase of the D-parameter fitted to the curves in Fig. 3 (see inlaid 
table in Fig. 3):  At low and high uL-values the largest resulting difference in D for a 
10-dB step in uL is observed, whereas in the midrange the simulations exhibit a higher 
robustness against an increase in level uncertainty.  
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Fig. 3: Speech recognition thresholds (SRTs) in the test-specific, stationary 
noise condition as a function of the noise level from simulations with FADE 
for different values of level uncertainty uL. The dashed lines show the 
corresponding results for the fluctuating ICRA5-250 noise. The embedded 
table reports the attenuation (A) and distortion (D) components (in dB) and 
the power coefficient P of the best-fitting Plomp curves according to Eq. 1. 

Combining individualization of audiogram and suprathreshold distortion correction 

To assess the effect of including a distortion correction based on estimates of the level 
uncertainty parameter uL into the modelling of the SRT data, Table 1 shows the 
correlation coefficients (Pearson’s R²) between modelled SRTs for stationary and 
fluctuating noise and the empirical data. Predictions indicate an interpolation method 
based on computations for the 10 typical audiograms only, while simulations refer to 
computations performed for each individual audiogram. The individual supra-
threshold distortion effect was not individually computed with the whole FADE 
approach, but rather estimated in two ways: 

 For the “typical” estimate of the level uncertainty parameter uL, a group of at least 
5 and up to 32 listeners, characterized by the same “typical” audiogram, was 
considered. Their deviation between prediction and empirical SRT was averaged 
either for the stationary or for the fluctuating noise. This deviation in SNR was 
converted into a uL value using the relation shown in Fig. 3, thus leading to the 
“typical stationary noise-based” or “typical fluctuating noise-based” indivi-
dualization of uL. The predicted or simulated SRT was obtained as before, but 
corrected by an appropriate SRT shift read out from the respective curve in Fig. 3. 

 The “individual” estimate of uL was determined from the individual deviation 
between modelled and empirical result in the stationary noise condition and then 
used to correct for suprathreshold distortions in fluctuating noise and vice versa. 
Note that estimating the “typical” uL values from the stationary or fluctuating 
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noise condition provides approximately the same prediction accuracy in both 
cases (i.e., both for predicting the stationary and the fluctuating noise data) as 
indicated by the very similar R². This suggests that the individual distortion effect 
is estimated to be very similar for both types of noises – which is a desired 
property for a universally applicable parameter characterizing the impaired 
individuals performance. Using the “typical” audiogram and distortion correction 
already outperforms the SII prediction accuracy for the fluctuating noise case. In 
the stationary noise case, the individual distortion correction is required to 
outperform the SII predictions.  

 

 
 

Table 1: Statistical analysis of the predicted/simulated speech recognition 
thresholds (SRTs). Pearson’s correlation coefficients (R²) are reported along 
with the root-mean-square (RMS) prediction error and the bias (B) for 
predicted/simulated SRTs with different distortion correction methods and 
SII-based predictions from Meyer and Brand (2013). 
 

Overall, the highest prediction and simulation accuracy is achieved if not typical 
parameter sets, but individualized audiogram and uL values are employed: Fig. 2B 
shows the individually modelled SRT in fluctuating noise using the individually 
obtained uL estimates from the stationary noise condition either predicted from the 
typical audiogram data (black dots) or individually simulated (grey dots). The graph 
demonstrates the high prediction accuracy observed for the individualized 
suprathreshold distortion parameter uL even if not an individualized, but typical 
audiogram is used.  

CONCLUSIONS 

The ASR-based, reference-free FADE approach can be used as a theoretical 
counterpart of the empirical Plomp (1978) model to quantitatively assess the effect of 
hearing impairment on SRTs in stationary and fluctuating noise.  
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Suprathreshold processing deficiencies can be modelled by the level uncertainty 
parameter uL which should be individually determined for a high prediction accuracy. 

The prediction accuracy achieved (expressed by Pearson’s R²) is much higher than the 
prediction accuracy achieved with modified and optimized SII-based measures (e.g., 
data presented by Mayer and Brand, 2013). 

Hence, the FADE approach is not only more versatile and makes much less 
assumptions than the SII, but also yields much higher prediction accuracy. 
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