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A great challenge in diagnosing and treating hearing impairment comes from 
the fact that people with similar degrees of hearing loss often have different 
speech-recognition abilities. Many studies of the perceptual consequences of 
peripheral damage have focused on outer-hair-cell (OHC) effects; however, 
anatomical and physiological studies suggest that many common forms of 
sensorineural hearing loss (SNHL) arise from mixed OHC and inner-hair-cell 
(IHC) dysfunction. Thus, individual differences in perceptual consequences 
of hearing impairment may be better explained by a more detailed 
understanding of differential effects of OHC/IHC dysfunction on neural 
coding of perceptually relevant sounds. Whereas it is difficult experimentally 
to estimate or control the degree of OHC/IHC dysfunction in individual 
subjects, computational neural models provide great potential for predicting 
systematically the complicated physiological effects of combined OHC/IHC 
dysfunction. Here, important physiological effects in auditory-nerve (AN) 
responses following different types of SNHL and the ability of current models 
to capture these effects are reviewed. In addition, a new approach is presented 
for computing spike-train metrics of speech-in-noise envelope coding to 
predict how differential physiological effects may contribute to individual 
differences in speech intelligibility. 

INTRODUCTION 

In the last 35 years, our knowledge of the physiological aspects of sensorineural 
hearing loss (SNHL) has expanded tremendously; however, despite these advances, 
very little physiological knowledge of SNHL goes into the design or fitting of hearing 
aids today. Although it is often difficult to relate experimentally measured 
physiological and perceptual findings, computational modelling provides great 
promise for quantitatively relating physiological and perceptual effects of SNHL in 
translational applications (Heinz, 2010). In fact, long before the accuracy of sensory 
models allowed such potential to be realized, a general theoretical framework (Fig. 1) 
was described for using mathematical models in the development of sensory 
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prostheses (Biondi, 1978; Biondi and Schmid, 1972). Fortunately, in the last 20 years 
advances in the complexity and accuracy of computational models of normal and 
impaired auditory systems have dramatically improved their potential for use in the 
quantitative design and fitting of hearing aids (e.g., Bondy et al., 2004).   

Fig. 1: Modelling framework for the design of auditory prostheses. The 
goal of the prosthesis is to restore normal auditory responses in a subject 
with impaired hearing. Computational models allow this goal to be 
optimally pursued by adjusting the prosthesis to minimize an error metric 
that quantifies the difference between normal and aided-impaired model 
responses. Error metrics can be derived based on models of responses at 
different levels of the auditory system, ranging from basilar-membrane to 
psychophysical responses. Modified and extended from Biondi (1978). 

Current audiological diagnoses classify all types of SNHL into a single category, 
despite clear individual differences within this one category (e.g., different speech 
recognition among patients with similar audiograms). It has long been believed (and 
perhaps still is in some places) that mild-moderate SNHL is primarily outer-hair-cell 
(OHC) based (with degraded frequency selectivity responsible for difficulty 
understanding speech), and that inner-hair-cell (IHC) effects only play a role in cases 
where threshold shifts are greater than 60 dB (e.g., Edwards, 2004; Moore, 1995). In 
fact, much insight into perceptual effects of SNHL has been  derived from considering 
the effects of OHC dysfunction on basilar-membrane responses (Moore, 1995; 
Oxenham and Bacon, 2003). However, anatomical and physiological evidence 
suggests that many common forms of SNHL are likely to involve mixed OHC/IHC 
dysfunction, and that IHC dysfunction can significantly affect perceptually relevant 
response properties in the auditory nerve (AN) related to intensity and speech coding. 
Thus, applications of computational models to account for sources of individual 
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physiological differences in SNHL require modelling at the AN (rather than basilar 
membrane). 

PHYSIOLOGICAL EFFECTS OF SNHL COMMONLY DERIVE FROM A 
MIXTURE OF IHC AND OHC DYSFUNCTION 

Liberman and Dodds (1984) established a strong correlation between AN tuning-
curve shapes following cochlear damage and the status of the underlying hair cells. 
Hair-cell stereocilia condition provided a much stronger correlation with threshold 
shift than did hair-cell survival. Unlike the well-defined “tip” and “tail” region of 
normal AN tuning curves, significant OHC stereocilia loss produced reduced tip 
sensitivity and broadened tuning, whereas damage to IHC stereocilia produced 
threshold elevations at all frequencies with little effect on frequency selectivity. In 
contrast to the longstanding belief that OHC dysfunction is the primary correlate of 
mild-moderate SNHL, anatomical evidence from these noise-induced hearing loss 
studies showed major overlap in the cochlear regions with OHC and IHC stereocilia 
damage, and in fact often showed broader regions of IHC stereocilia damage (see Figs. 
4, 5, 7, 8, and 9 in Liberman and Dodds, 1984). 

In addition to noise-induced hearing loss, age-related hearing loss (or presbycusis) is 
also likely to include a mixture of IHC/OHC dysfunction. Schmiedt et al. (2002) 
demonstrated that young gerbils with furosemide-induced endocochlear-potential 
(EP) reductions showed physiological audiograms that matched those of aged gerbils 
(with similar reductions in EP). Furthermore, these audiograms showed the typical 
sloping high-frequency hearing loss characteristic of age-related hearing loss in 
humans. Reductions in EP have been shown to produce physiological AN responses 
(e.g., broadened tuning, reduced spontaneous and driven firing rates) consistent with 
mixed OHC/IHC dysfunction (Sewell, 1984). A mixed hair-cell loss fits with the view 
that the EP provides the battery that drives transduction in both types of hair cells. In 
summary, the available anatomical and physiological evidence suggests that many 
common forms of SNHL (e.g., noise and age) involve mixed OHC/IHC dysfunction. 

MODEL REQUIREMENTS TO RELATE INDIVIDUAL DIFFERENCES IN 
PHYSIOLOGICAL AND PERCEPTUAL EFFECTS OF SNHL  

The combined (and sometimes confounding) effects of OHC and IHC dysfunction in 
the same cochlear frequency region are likely to be quite complicated. Computational 
neural models provide great potential for predicting systematically the complicated 
physiological effects of combined OHC/IHC dysfunction. Based on anatomical and 
physiological knowledge of peripheral effects of SNHL, general requirements are now 
clear for computational modelling approaches to relate individual differences in 
physiological and perceptual responses with SNHL: 1) inclusion of both OHC and 
IHC dysfunction, since each is likely to occur in common forms of SNHL (e.g., age 
and noise); 2) ability to predict responses to arbitrary complex signals, since deficits 
often occur in complex listening situations (e.g., speech in noise); 3) accurate 
representation of temporal responses (both rapid and slow), since both timescales are 
likely to be perceptually relevant in many tasks for which listeners with SNHL have 
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particular difficulty (e.g., source segregation, speech intelligibility in real-world 
background noises); 4) ability to evaluate cochlear synaptopathy, since a reduction in 
the number of IHC synapses occurs with age and moderate noise exposure, even in 
cases without permanent threshold shift (Kujawa and Liberman, 2015); and 5) ability 
to relate spike-time responses to perceptually relevant metrics, since responses at the 
level of the AN are required to capture the known physiological SNHL effects.  

Computational models now exist that incorporate the salient response properties (both 
rate and timing) that are important for modelling individual differences in OHC/IHC 
dysfunction (reviewed by Heinz, 2010), and numerous modelling frameworks exist 
for relating physiological and perceptual responses (e.g., Elhilali et al., 2003; Heinz 
et al., 2001; Hines and Harte, 2012). This chapter will focus on a well-established AN 
model (Bruce et al., 2003; Carney, 1993; Zilany et al., 2009; 2014) to review how 
various physiological effects of OHC/IHC dysfunction can be accounted for in 
computational models. This model accounts for a wide range of response properties 
measured from both normal and hearing-impaired animals for a wide range of stimuli 
(e.g., tones, noise, and speech). The model takes as input an arbitrary acoustic 
waveform and produces an output of spike times for a single AN fibre with a specified 
characteristic frequency (CF) (see Fig. 2 in Zilany et al., 2009). The model allows 
independent control of OHC and IHC function through two parameters, COHC and 
CIHC, ranging from 1 (normal) to 0 (fully dysfunctional).  

Modelling OHC dysfunction 

Damage to OHCs has been shown to result in numerous correlated effects: increased 
thresholds (reduced cochlear gain at CF), broadened tuning, reduced cochlear 
compression, reduced two-tone suppression, and reduced level dependence in phase 
responses. Each of these properties is believed to be associated with a single 
mechanism (sometimes called the cochlear amplifier), for which OHCs play a major 
role. Thus, a key insight into modelling the effects of OHC dysfunction is to include 
a single signal-processing mechanism that accounts for all of these effects together 
(Carney, 1993; Kates, 1991; Patuzzi, 1996), and for which the effects of OHC 
dysfunction can be included in a single-parameter fashion (Bruce et al., 2003; for 
review, see Heinz, 2010). By modelling OHC dysfunction as a single parameter that 
controls the maximum cochlear gain at low sound levels, partial OHC damage reduces 
each of these nonlinear properties by an amount that is proportional to the fractional 
reduction in cochlear gain (see Fig. 4 in Bruce et al., 2003). While insight can be 
gained from simpler models that isolate some of these effects, such models are limited 
in their generality for complex stimuli, which are likely to be critical for SNHL model 
applications such as hearing-aid design. 

Modelling IHC dysfunction  

IHC damage has often been thought of primarily in terms of complete IHC loss (i.e., 
dead regions); however, it is clear that dysfunction of remaining IHCs can have 
significant effects on perceptually relevant neural responses. Although moderate IHC 
dysfunction does not significantly affect tuning, there are other consistent effects on 
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AN response properties following IHC damage, including elevated thresholds, 
reduction in spontaneous and driven rates, and reduction in the slopes of rate-level 
functions (Liberman and Dodds, 1984; Liberman and Kiang, 1984; Wang et al., 
1997). It is typically believed that AN rate-level functions are steeper following 
SNHL, consistent with the effects of loudness recruitment; however, this has been 
shown not to be a consistent effect (Harrison, 1981; Heinz and Young, 2004; see Fig. 
2A). IHC dysfunction was hypothesized to be responsible for reducing the rate of 
response growth based on one of two mechanisms.  The first is that damage to IHC 
stereocilia may reduce the number of transduction channels that can open, resulting 
in a reduced maximum transduction current and a reduced response-growth slope. 
Second, if OHC function remains normal, IHC damage may elevate thresholds enough 
so that the AN-fibre rate-level function is made shallower by remaining BM 
compression. Thus, IHC damage can confound the effects of OHC damage on basic 
response properties, such as response growth with level (Fig. 2B). 

Fig. 2: (A) CF-tone AN rate-level functions were shallower than normal 
following noise-induced hearing loss. (B) Damage to the IHC transducer 
can produce shallower AN response growth despite steeper BM responses 
due to OHC damage. Modified from Heinz and Young (2004), Heinz et al. 
(2005). 

IHC dysfunction was modelled by Bruce et al. (2003) with a shallower input/output 
transduction function, under the control of CIHC. The IHC module with SNHL 
accounted for the wide range of rate-level functions observed experimentally (Heinz 
and Young, 2004; see Fig. 6 in Zilany and Bruce, 2006), and contributed to reduced 
synchrony capture in vowel responses (Bruce et al., 2003; Miller et al., 1997). 

Further insight into the effects of IHC dysfunction comes from studies in chinchillas, 
where the platinum-based chemotherapy drug carboplatin specifically affects IHCs 
while leaving OHCs intact. While dose-dependent IHC loss is observed along the 
cochlea following carboplatin, structural damage has also been observed (e.g., to 
stereocilia) in remaining IHCs (Wake et al., 1994), with reduced spontaneous and 
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driven discharge rates despite normal tuning (Wang et al., 1997). Although remaining 
AN fibres show normal temporal coding to modulated tones (quantified by average 
vector strength), fewer spikes in response to sound alters the response statistics and 
degrades predicted detection/discriminability when both response mean and variance 
are considered (i.e., in terms of a d’ metric; Axe and Heinz, 2015). Thus, reduced 
spike rates from IHC dysfunction may be perceptually relevant due to reduced 
information from less reliable responses.  

Challenges in modelling mixed hair-cell dysfunction 

While this signal-processing filter-bank model approach allows for implementation of 
an IHC transduction function that accounts for the observed range of rate-level shapes 
(Zilany and Bruce, 2006), it does not currently account for the reduction in 
spontaneous rate observed with carboplatin toxicity, noise induced hearing loss, and 
metabolic age-related hearing loss. Because this reduced spike count may be 
perceptually relevant, this is likely to be an important component to include in future 
models of IHC dysfunction. Also, the current independent control of OHC/IHC 
dysfunction does not capture directly the effects of metabolic hearing losses 
associated with presbycusis (Schmiedt et al., 2002), where OHC and IHC function are 
both dependent on the same EP “battery”.  More biophysically based models with EP 
control of both OHC and IHC function have been shown to capture the main effects 
of metabolic presbycusis in a more physiologically constrained approach (Saremi and 
Stenfelt, 2013), but this is not currently possible with the phenomenological signal-
processing model approach of Zilany et al. (2009).   

COMPUTING PERCEPTUAL METRICS FROM SPIKE-TIME RESPONSES  

The influence of inherent fluctuations on speech intelligibility: SNRENV

Recent psychophysically based modelling has demonstrated that the signal-to-noise 
ratio (SNRENV) at the output of a modulation filter bank provides a robust measure of 
speech intelligibility (Jørgensen and Dau, 2011). The effect of the noise (N) on speech 
(S) coding is assumed to: 1) reduce envelope power of S+N by filling in the dips of
clean speech, and 2) introduce a noise floor due to intrinsic fluctuations in the noise
itself. Changes in the SNRENV metric with acoustic processing/distortion can be related
to a change in speech reception threshold (SRT). An ideal-observer framework is used
to convert SNRENV to percent correct. The central hypothesis of this modelling
framework is that the predicted change in intelligibility arises because the processing
(or in this case SNHL) changes the input (acoustic) SNR needed to obtain the SNRENV

corresponding to a given percent correct. SNRENV predicted speech intelligibility
across a wider range of degraded conditions than many long-standing speech-
intelligibility models (e.g., STI). Key insight into the effect of spectral subtraction on
speech intelligibility was garnered by consideration of the modulation-domain SNR,
which factors in the inherent fluctuations within the noise. Although spectral
subtraction increased the envelope power in the noisy-speech (leading STI-based
metrics to predict improvements), it also increased the envelope power in the noise-
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alone response to a greater degree such that SNRENV decreased, consistent with the 
observed performance degradation. 

Extending the envelope power spectrum model (SNRENV) to neural responses 

While the promise of the SNRENV metric has been demonstrated for normal-hearing 
listeners (Jørgensen and Dau, 2011), it has yet to be thoroughly extended to hearing-
impaired listeners because of limitations in our physiological knowledge of how 
SNHL affects the envelope coding of speech in noise relative to noise alone. Here, 
envelope coding to non-periodic stimuli (e.g., speech in noise) was quantified from 
model neural spike trains using shuffled-correlogram analyses, which were analysed 
in the modulation frequency domain to compute modulation-band based estimates of 
signal and noise envelope coding (e.g., a neural SNRENV metric). 

Neural spike-train responses were obtained from the most recent version of the AN 
model (Zilany et al., 2014), with responses from medium-spontaneous-rate fibres 
considered here. Figure 3 shows the single sentence considered in this initial study, 
along with predicted AN-fibre discharge rate waveforms for a CF=1 kHz fibre to clean 
speech, noisy speech, and noise alone. The noise used was broadband Gaussian noise, 
spectrally matched to the sentence. Strong speech modulations are seen in the clean-
speech response, with only the largest and slowest modulations apparent in the noisy-
speech response. Inherent fluctuations in the noise-alone response are seen, which  are 
an important factor in the envelope power spectrum model analyses (Jørgensen and 
Dau, 2011). Shuffled correlogram analyses were used to quantify envelope coding in 
each condition (Louage et al., 2004; Swaminathan and Heinz, 2011). By averaging 
correlograms from positive- and negative-polarity versions of each stimulus, the 
sumcor (Fig. 3B top) quantifies the temporal envelope coding in terms of an 
autocorrelation function, whereas the Fourier transform of the sumcor estimates the 
envelope power-spectral density (Fig. 3B bottom). As in the envelope power spectrum 
model analyses, the SNRENV metric was computed for each fibre CF and modulation 
filter band by computing the ratio of the response envelope power for speech 
(estimated as the envelope power to noisy speech (S+N) minus the envelope power to 
noise alone) divided by the envelope power to noise alone (see Eqs. 2 and 4 in 
Jørgensen and Dau, 2011). Here, envelope power was computed within seven 
modulation-frequency bands (Fig. 3C) by integrating the envelope power spectral 
density within different modulation-frequency ranges (a low-pass range at and below 
1 Hz, and six octave-spaced bands centred at 2 to 64 Hz with a bandwidth equal to the 
centre frequency, i.e., Q=1). Although not implemented directly as modulation filters, 
these seven modulation bands correspond closely to the seven original modulation 
bands (Jørgensen and Dau, 2011). A total SNRENV (see Fig. 4) was computed by 
combining the individual SNRENV values from each modulation band and each 
acoustic filter (as in Eq. 6 of Jørgensen and Dau, 2011). In this initial study, four AN-
fibre CFs were used (0.5, 1, 2, and 4 kHz) to compute SNRENV as a function of acoustic 
SNR (Fig. 4) for several versions of the AN model (normal hearing, 30-dB OHC loss, 
and mixed 15-dB/15-dB IHC/OHC loss). For SNHL model versions, a speech level 
of 80 dB SPL was used so that all comparisons were at equal sensation level (SL).  
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Preliminary predictions of the effect of individual differences on SNRENV 

Overall, many aspects of the SNRENV predictions computed here from neural spike 
trains showed close similarities to the psychoacoustical model predictions motivating 
this work (Jørgensen and Dau, 2011). 1) Envelope power excitation patterns (e.g., 
Figs. 3C and 5) showed the same relative position across conditions, with the highest 
envelope power for clean speech, the lowest envelope power for noise alone, and 
noisy speech in between. 2) The peak in speech envelope power was observed in the 

 

Fig. 3: Extending the envelope power spectrum model analysis of SNRENV  
(Jørgensen and Dau, 2011) to neural spike-train responses. (A) One speech 
sentence with overall sound level of 50 dB SPL (best modulation level for 
this fibre; top row) was presented to a medium-spontaneous-rate model AN 
fibre with CF = 1 kHz (2nd row). Noise-alone (3rd row) and noisy-speech 
responses (bottom row) are shown for a 5-dB acoustic SNR condition. (B) 
The shuffled-correlogram sumcor (top) was used to quantify temporal 
envelope coding in each response, with the envelope power spectral density 
estimated as the Fourier transform of the sumcor (bottom). (C) Envelope 
power as a function of modulation-band centre frequency computed from 
the envelope spectral density for clean speech, noisy speech, and noise 
alone. 
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4-Hz modulation band. 3) Negligible differences were predicted between noisy-
speech and noise-alone envelope power (i.e., zero SNRENV) for the 16-64 Hz 
modulation bands. 4) The total SNRENV varied from about 2 dB to 14 dB as acoustic 
(input) SNR varied from −9 to 9 dB, with these neural values being above the neural 
noise floor in all conditions.   

 

Predictions of total SNRENV as a function of acoustic SNR (Fig. 4) varied across the 
three AN-model versions with different degrees of OHC/IHC dysfunction. Both 
SNHL versions predicted reduced SNRENV relative to normal hearing, with a ~5-dB 
acoustic (input) SNR loss (estimated at SNRENV = 5 dB) for 30-dB OHC dysfunction 
and ~2.5-dB SNR loss for 30-dB mixed OHC/IHC dysfunction. A cross-over between 
OHC and mixed predictions was observed at 3-dB input SNR, with OHC dysfunction 
predictions nearly matching normal hearing at the highest SNR. The cross-over is due 
to a greater SNR loss (rightward shift) in the OHC function for low SNRs (e.g., more 
noise through broad filters) and less SNR loss for cleaner speech. 

This spike-train approach allows the exploration of individual differences in the 
modulation domain for noisy-speech encoding. For these 30-dB hearing losses and 
equal-SL comparisons, there was (Fig. 5): 1) less difference across model versions for 
clean speech, 2) reduced envelope power for noisy speech, 3) reduced (but less so than 
noisy speech) envelope power for noise alone (intrinsic fluctuations), 4) resulting 
overall reductions in SNRENV (from 2nd and 3rd points), and 5) differences predicted 
when IHC dysfunction (i.e., shallower transduction) was included. 

 

 

Fig. 4: Individual differences in speech intelligibility are predicted with 
varying degrees of OHC/IHC dysfunction. Neural-based predictions of 
total SNRENV are shown as a function of input (acoustic) SNR for three 
versions of the AN model that varied in OHC/IHC dysfunction. All 
comparisons were made at equal SL, using medium-spontaneous-rate 
(MSR) fibres. A neural noise floor is shown based on randomized spike 
times.                             
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SUMMARY AND IMPLICATIONS 

Modelling at the AN level is required to include the physiological factors known to 
influence neural coding of complex sounds: 1) OHC dysfunction, 2) IHC dysfunction, 
3) IHC loss (dead regions), 4) EP reduction in presbycusis, 5) cochlear synaptopathy. 
Preliminary spike-train analyses show strong similarities to the speech envelope 
power spectrum model of Jørgensen and Dau (2011), which has shown the importance 
of SNRENV for predicting speech intelligibility across a wide range of processing 
conditions. While these preliminary neural predictions are shown here primarily to 
demonstrate the feasibility of neural SNRENV computations from spike-train responses, 
the cross-over in Fig. 4 suggests that individual differences may occur based on 
differential degrees of OHC/IHC dysfunction in listeners currently diagnosed into the 
single category of SNHL. These neural computations will be applied in future animal 
studies to quantify the effects of various types of SNHL on coding of speech and 
inherent noise modulations, which may provide valuable insight for understanding 
individual differences in speech-in-noise intelligibility. 
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Fig. 5: Envelope power as a function of modulation-band centre frequency 
for clean-speech, noisy-speech, and noise-alone responses from AN-model 
versions that varied in OHC/IHC dysfunction (as in Fig. 4). 
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